Skip to main content
Log in

Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric materials, for example skutterudites and magnesium silicides, are being investigated as promising materials for medium-to-high-temperature waste heat recovery in transport and in industry. A crucial aspect of the success of a thermoelectric material is its stability over time when exposed to rapid heating and cooling. In this work different aspects of the degradation of these thermoelectric materials at high temperature were examined. Initial thermal durability was studied, and several candidate coatings were evaluated to enhance durability by protecting the materials from oxidation and sublimation during thermal cycles in air for up to 500 h and up to 873 K. The samples were characterized by SEM and EDS. The results showed it is possible to reduce degradation of the thermoelectric material without compromising overall thermoelectric efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L.N. Library, U.S. Energy Flow (2011) [cited 15 April 2013]. Available from: https://flowcharts.llnl.gov/energy.html#2011.

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Article  Google Scholar 

  4. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  5. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  6. R. Hara, S. Inoue, H.T. Kaibe, and S. Sano, J. Alloy. Compd. 349, 297 (2003).

    Article  Google Scholar 

  7. J. Leszczynski, A. Malecki, and K.T. Wojciechowski, International Conference on Thermoelectrics (2007).

  8. E. Godlewska, K. Zawadzka, A. Adamczyk, M. Mitoraj, and K. Mars, Oxid. Met. 74, 113 (2010).

    Article  Google Scholar 

  9. D. Zhao, C. Tian, S. Tang, Y. Liu, and L. Chen, J. Alloy. Compd. 504, 552 (2010).

    Article  Google Scholar 

  10. J. Leszczynski, K. Wojciechowski, and A. Malecki, J. Therm. Anal. Calorim. 105, 211 (2011).

    Article  Google Scholar 

  11. D. Zhao, C. Tian, Y. Liu, C. Zhan, and L. Chen, J. Alloy. Compd. 509, 3166 (2011).

    Article  Google Scholar 

  12. X. Xia, P. Qiu, X. Shi, X. Li, X. Huang, and L. Chen, J. Electron. Mater. 41, 2225 (2012).

    Article  Google Scholar 

  13. M. Riffel and J. Schilz, International Conference on Thermoelectrics (1997), pp. 283–286.

  14. J.-I. Tani, M. Takahashi, and H. Kido, J. Alloy. Compd. 488, 346 (2009).

    Article  Google Scholar 

  15. H. Scherrer, F. Gascoin, Q. Recour, D. Berthebaud, P. Zwolenski, L. Chaput, B. Wiendlocha, J. Tobola, and J. Bourgeois, Funct. Mater. Lett. 06, 1340005 (2013).

    Google Scholar 

  16. J.S. Sakamoto, G.J. Snyder, T. Calliat, J.-P.S. Fleurial, M. Jones, and J.-A. Palk, US 7,461,512 B2, 9 Dec 2008.

  17. J. Salvador, J. Cho, Z. Ye, J. Moczygemba, A. Thompson, J. Sharp, J. König, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A. Wereszczak, and G. Meisner, J. Electron. Mater. 42, 1389 (2012).

    Article  Google Scholar 

  18. H.H. Saber and M.S. El-Genk, Energy Convers. Manag. 48, 1383 (2007).

    Article  Google Scholar 

  19. H.H. Saber, M.S. El-Genk, and T. Caillat, Energy Convers. Manag. 48, 555 (2007).

    Article  Google Scholar 

  20. E. Godlewska, K. Zawadzka, R. Gajerski, M. Mitoraj, and K. Mars, Ceram. Mater. 62, 490 (2010).

    Google Scholar 

  21. E. Godlewska, K. Zawadzka, K. Mars, R. Mania, K. Wojciechowski, and A. Opoka, Oxid. Met. 74, 205 (2010).

    Article  Google Scholar 

  22. P. Wei, C.-L. Dong, W.-Y. Zhao, and Q.-J. Zhang, J. Inorg. Mater. 25, 577 (2010).

    Article  Google Scholar 

  23. H. Dong, X. Li, X. Huang, Y. Zhou, W. Jiang, and L. Chen, Ceram. Int. 39, 4551 (2013).

  24. H. Dong, X. Li, Y. Tang, J. Zou, X. Huang, Y. Zhou, W. Jiang, G.-J. Zhang, and L. Chen, J. Alloy. Compd. 527, 247 (2012).

    Article  Google Scholar 

  25. K. Zawadzka, E. Godlewska, K. Mars, and M. Nocun, AIP Conf. Proc. 1449, 231 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunstein Skomedal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skomedal, G., Kristiansen, N.R., Engvoll, M. et al. Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials. J. Electron. Mater. 43, 1946–1951 (2014). https://doi.org/10.1007/s11664-013-2917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2917-0

Keywords

Navigation