Skip to main content
Log in

Solid-State Synthesis and Thermoelectric Properties of Sb-Doped Mg2Si Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sb-doped magnesium silicide compounds have been prepared through ball milling and solid-state reaction. Materials produced were near-stoichiometric. The structural modifications have been studied with powder x-ray diffraction. Highly dense pellets of Mg2Si1−x Sb x (0 ≤ x ≤ 0.04) were fabricated via hot pressing and studied in terms of Seebeck coefficient, electrical and thermal conductivity, and free carrier concentration as a function of Sb concentration. Their thermoelectric performance in the high temperature range is presented, and the maximum value of the dimensionless figure of merit was found to be 0.46 at 810 K, for the Mg2Si0.915Sb0.015 member.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.N. Nikitin, V.G. Bazanov, and V.I. Tarasov, Sov. Phys. Solid State 3, 2648 (1961).

    Google Scholar 

  2. M. Riffel and J. Schilz, Scr. Metall. Mater. 32, 1951 (1995).

    Article  CAS  Google Scholar 

  3. M. Ioannou, E. Hatzikraniotis, Ch. Lioutas, Th. Hassapis, Th. Altantzis, K.M. Paraskevopoulos, and Th. Kyratsi, Powder Technol. 217, 523 (2012).

    Article  CAS  Google Scholar 

  4. J. Tani and H. Kido, Intermetallics 15, 1202 (2007).

    Article  CAS  Google Scholar 

  5. J. Tani and H. Kido, Phys. B 364, 218 (2005).

    Article  CAS  Google Scholar 

  6. J.-Y. Jung, K.-H. Park, and I.-H. Kim, IOP Conf. Ser.: Mater. Sci. Eng. 18, 142006 (2011).

    Article  Google Scholar 

  7. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev B 76, 235204 (2007).

    Article  Google Scholar 

  8. M.W. Chase Jr, J. Phys. Chem. Ref. Data 14, 1495 (1985).

    Google Scholar 

  9. L. Lu, M.O. Lai, and M.L. Hoe, NanoStruct. Mater. 10, 551 (1998).

    Article  CAS  Google Scholar 

  10. M. Ioannou, K. Chrissafis, E. Pavlidou, F. Gascoin, and Th. Kyratsi, J. Solid State Chem. 197, 172 (2013).

    Article  CAS  Google Scholar 

  11. E. Godlewska, K. Mars, R. Mania, and S. Zimowski, Intermetallics 19, 1983 (2011).

    Article  CAS  Google Scholar 

  12. F. Gervais and B. Piriou, Phys. Rev. B10, 1642 (1974).

    Google Scholar 

  13. M.W. Heller’t and G.C. Danielson, J. Phys. Chem. Solids 23, 601 (1962).

    Article  Google Scholar 

  14. G. Busch and U. Winkler, Physica 20, 1067 (1954).

    Article  CAS  Google Scholar 

  15. R.J. LaBotz, D.R. Mason, and D.F. O’Kane, J. Electrochem. Soc. 110, 127 (1963).

    Article  CAS  Google Scholar 

  16. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Mater. Trans. JIM 33, 851 (1992).

    CAS  Google Scholar 

  17. D. Wang and G.S. Nolas, Advances in Electronic Ceramics, ed. C. Randall, H.-T. Lin, K. Koumoto, and P. Clem (Westerville, OH: The American Ceramic Society, 2008), p. 185.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Kyratsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioannou, M., Polymeris, G., Hatzikraniotis, E. et al. Solid-State Synthesis and Thermoelectric Properties of Sb-Doped Mg2Si Materials. J. Electron. Mater. 42, 1827–1834 (2013). https://doi.org/10.1007/s11664-012-2442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2442-6

Keywords

Navigation