Skip to main content
Log in

Electrical and structural study of new antimony iodide-doped silver sulfate electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper deals with the preparation and ion transport characteristics of a series of compositions in the solid-state mixed system [(SbI3)100 − x –(Ag2SO4) x ] where x = 10, 20, 30, 40, 50, 60, 70, 80, and 90 mol%, respectively. These samples have been characterized by powder X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, ionic transport number, and impedance spectroscopic measurements. Among various compositions investigated, significant ones have possessed AgI as one of the constituent phases. Detailed electrical conductivity studies have shown that the observed ionic conductivity attains a maximum value of 2.1 × 10−3 S cm−1 at room temperature (298 K) for the typical composition containing x = 60 mol%, whereas the corresponding values of transport number of silver ion as determined by Wagner’s and EMF methods are found to be nearly unity. Interestingly, the enhanced ionic conduction of the chosen composite system may be attributed to the feasibility of formation of AgI in several compositions as a consequence of ion exchange reaction between SbI3 and Ag2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dell RM (2000) Solid State Ionics 134:139–158

    Article  CAS  Google Scholar 

  2. Hassan M, Noman A, Al-hakimi, Rafinddin (2011) Arabian J Chem 4:45–49

    Article  CAS  Google Scholar 

  3. Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  4. Chowdari BVR, Radhakrishna S (1986) Materials for sold state batteries. World Scientific, Singapore

    Google Scholar 

  5. Renard C, Coqel G, Bychkov E (2002) Solid State Ionics 154:749–757

    Article  Google Scholar 

  6. Durga Rani AN, Hariharan K (1996) Mater Chem Phys 43:243–249

    Article  Google Scholar 

  7. Viswanathan A, Suthanthiraraj SA (1992) Solid State Ionics 58:89–96

    Article  CAS  Google Scholar 

  8. Suthanthiraraj SA, Vinod M (2005) Indian J Phys 79:753–756

    CAS  Google Scholar 

  9. Suthanthiraraj SA, Ganeshkumar AC (2003) Mater Sci Eng B100:156–162

    Google Scholar 

  10. Viswanathan A, Suthanthiraraj SA (1993) Mater Res Bull 28:821–828

    Article  CAS  Google Scholar 

  11. Suthanthiraraj SA, Sarumathi R (2012) Appl Nanosci. doi:101007/s13204-012-0155

  12. Suthanthiraraj SA, Sarojini S (2012) Chem Sci Trans 1:13–22

    Article  CAS  Google Scholar 

  13. Suthanthiraraj SA, Shankaran VS (2012) Ionics. doi:10.1007/s11581-012-0804-y

  14. JCPDS-International Centre for Diffraction data (1983) Selected powder diffraction data for forensic materials: search manual, JCPDS International Centre for Diffraction Data, Pennsylvania (JCPDS file no.00-009 0399) p 430

  15. JCPDS-International Centre for Diffraction data (1983) Selected powder diffraction data for forensic materials: search manual, JCPDS International Centre for Diffraction Data, Pennsylvania (JCPDS file no.00-009 0374) p 410

  16. Takahashi T (1973) J App Electochem 3:79–90

    Article  CAS  Google Scholar 

  17. Wasiucionek M, Galazka K, Garbarczyk JE, Nowinski JL, Gierlotka S, Palosz B (2011) Solid State Ionics 192:113–117

    Article  CAS  Google Scholar 

  18. Anwane SW (2012) Adv Mat Lett 3:204–212

    Article  Google Scholar 

  19. Tarte P, Rulmont A (1990) Solid State Ionics 42:177–196

    Article  CAS  Google Scholar 

  20. Shi JY, Yi CW, Liang L, Kim K (2010) Bull Korean Chem Soc 31:309–314

    Article  CAS  Google Scholar 

  21. Macdonald JR (ed) (1987) Impedance spectroscopy. Wiley, New York, pp 12–23

    Google Scholar 

  22. Hema M, Selvasekerapandian S, Hirankumar G, Sakunthala A, Arunkumar D, Nithya H (2009) J Phys Chem Solids 70:1098–1103

    Article  CAS  Google Scholar 

  23. Chandrasekhar VG, Suthanthiraraj SA (1993) Solid State Ionics 62:61–67

    Article  CAS  Google Scholar 

  24. Seydei MKP, Suthanthiraraj SA (1993) Bull Electrochem 9:313–315

    CAS  Google Scholar 

  25. Seydei MKP, Suthanthiraraj SA (1993) J Mater Sci 28:3519–3522

    Article  CAS  Google Scholar 

  26. Kawamura J, Shimoji M (1989) Mater Chem Phys 23:99–120

    Article  CAS  Google Scholar 

  27. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the DSC facility provided by SAIF-IITM and the SEM facility provided by National Centre for Nanoscience and Nanotechnology, University of Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Austin Suthanthiraraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suthanthiraraj, S.A., Sarumathi, R. Electrical and structural study of new antimony iodide-doped silver sulfate electrolytes. Ionics 19, 1145–1153 (2013). https://doi.org/10.1007/s11581-012-0826-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0826-5

Keywords

Navigation