Skip to main content
Log in

Remediation of Tributyltin Contaminated Seawater by Adsorption Using nFe3O4, Activated Carbon and nFe3O4/Activated Carbon Composite Material

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The remediation of tributyltin (TBT) by adsorption onto nFe3O4, activated carbon and nFe3O4/activated carbon composite material as a function of adsorbent dose, contact time, pH, stirring speed, initial TBT concentration and temperature was studied. The effect of temperature on kinetics and equilibrium of TBT sorption on the precursors and the composite was thoroughly examined. The adsorption kinetics is well fitted using a pseudo-second-order kinetic model, and the adsorption isotherm data of nFe3O4, activated carbon could be described by the Freundlich isotherm model whereas nFe3O4/activated carbon composite could be described by the Freundlich and Dubinin–Radushkevich isotherm models. Thermodynamic parameters (i.e. change in the free energy (∆G°), the enthalpy (∆H°) and the entropy (∆S°)) were also evaluated. The overall adsorption process was endothermic and spontaneous in nature. The results obtained also showed that 99.9, 99.7 and 80.1 % TBT were removed from contaminated natural seawater by nFe3O4/activated carbon composite, activated carbon and nFe3O4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

q e :

Amount of TBT adsorbed at equilibrium per unit weight of the adsorbent (in milligrams per gram)

q t :

Amount of TBT adsorbed at any time (in milligrams per gram)

k 1 :

Pseudo-first-order rate constant/minute

k 2 :

Rate constant of pseudo-second-order adsorption (in grams per milligram minute)

h o :

Initial adsorption rate (in milligrams per gram per minute)

α E :

Constant in the Elovich rate equation (in grams per square minute per milligram)

β :

Constant in the Elovich rate equation (in grams minute per milligram)

k p :

Rate coefficient for particle diffusion controlled process

k :

Fractional power rate constant

c a :

Amount of adsorbed TBT on the adsorbent (in milligrams per gram)

c e :

Equilibrium concentration of TBT in the bulk solution (in milligrams per litre)

c o :

Initial concentration of the TBT aqueous solution

R :

Gas constant (in joules per mole kelvin)

k L :

Langmuir isotherm constant

A max :

Maximum monolayer TBT adsorption capacity (in milligrams per gram)

k F :

Freundlich isotherm constant

n F :

Exponent in the Freundlich isotherm

k T :

Temkin isotherm constant

b T :

Constant in the Temkin isotherm (in joules per mole)

n T :

Constant in the Temkin isotherm, n T = RT/b T

k D–R :

Dubinin–Radushkevich (D–R) isotherm constant

ε :

Polanyi potential = RT ln(1 + 1/c e)

E :

Mean free energy (in joules per mole), E = 1/√2k D–R

q m :

Maximal substance amount of adsorbate per gram of the adsorbent

ΔG°:

Standard Gibbs free energy (in kilojoules per mole)

ΔH°:

Standard enthalpy change (in kilojoules per mole)

ΔS°:

Standard entropy change (in joules per kelvin per mole)

T :

Absolute temperature

K c :

Thermodynamic equilibrium constant

References

  • Ayanda, O. S., Fatoki, O. S., Adekola, F. A., & Ximba, B. J. (2012). Fate and remediation of organotin compounds in seawaters and soils. Chemical Science Transactions, 1, 470–481.

    Article  Google Scholar 

  • Ayanda, O. S., Fatoki, O. S., Adekola, F. A., & Ximba, B. J. (2013a). Removal of tributyltin from shipyard process wastewater by fly ash, activated carbon and fly ash/activated carbon composite: adsorption models and kinetics. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.4088.

    Google Scholar 

  • Ayanda, O. S., Fatoki, O. S., Adekola, F. A., & Ximba, B. J. (2013b). Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater. Marine Pollution Bulletin. doi:10.1016/j.marpolbul.2013.04.001.

    Google Scholar 

  • Brandli, R. C., Breedveld, G. D., & Cornelissen, G. (2009). Tributyltin sorption of marine sedimentary black carbon and to amended activated carbon. Environmental Toxicology and Chemistry, 28, 503–508.

    Article  CAS  Google Scholar 

  • Celebi, O., Uzum, C., Shahwan, T., & Erten, H. N. (2007). A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials, 148, 761–767.

    Article  CAS  Google Scholar 

  • Fang, L., Borggaard, O. K., Marcussen, H., Holm, P. E., & Hansen, H. C. B. (2010). The pH-dependent adsorption of tributyltin to charcoals and soot. Environmental Pollution, 158, 3642–3649.

    Article  CAS  Google Scholar 

  • Fatoki, O. S., Ayanda, O. S., Adekola, F. A., Ximba, B. J., & Opeolu, B. O. (2012). Preparation and characterization of activated carbon–nFe3O4, activated carbon–nSiO2 and activated carbon–nZnO hybrid materials. Particle and Particle Systems Characterization, 29, 178–191.

    Article  CAS  Google Scholar 

  • Hoch, M., Alonso-Azcarate, J., & Lischick, M. (2002). Adsorption behavior of toxic tributyltin to clay-rich sediments under various environmental conditions. Environmental Toxicology and Chemistry, 21, 1390–1397.

    Article  CAS  Google Scholar 

  • Honda, K., Takahashi, T. (2006). Organotin compound treatment, US patent 0276666.

  • Horsfall, M., & Spiff, A. I. (2004). Studies on the effect of pH on the sorption of Pb2+ and Cd2+ ions from aqueous solutions by caladium bicolor (wild cocoyam) biomass. Electronic Journal of Biotechnology, 7, 1–7.

    Google Scholar 

  • Hutson, H. D., & Yang, R. T. (1997). Theoretical basis for the Dubinin–Radushkevitch (D–R) adsorption isotherm equation. Adsorption, 3, 189–195.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, S., & Kumar, S. (2003). Adsorption of resorcinol and catechol on granular activated carbon: equilibrium and kinetics. Carbon, 41, 3015–3025.

    Article  CAS  Google Scholar 

  • Liu, W. J., Zeng, F. X., Jiang, H., & Zhang, X. S. (2011). Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl2 activated EDTA. Chemical Engineering Journal, 170, 21–28.

    Article  CAS  Google Scholar 

  • Maarof, H. I., & Hameed, B. H. (2004). Adsorption isotherms for phenol onto activated carbon. AJChE, 4, 70–76.

    Google Scholar 

  • Said-Pullicino, D., & Vella, A. J. (2005). Adsorption characteristics of tributyltin on municipal solid waste compost. Applied Organometallic Chemistry, 19, 719–726.

    Article  CAS  Google Scholar 

  • Sheikh, M. A., Noah, N. M., Tsuha, K., & Oomori, T. (2007). Occurrence of tributyltin compounds and characteristics of heavy metals. International Journal of Environmental Science and Technology, 4, 49–59.

    Article  CAS  Google Scholar 

  • Shin, S. K., & Song, J. H. (2011). Modeling and simulations of the removal of formaldehyde using silver nano-particles, attached to granular activated carbon. Journal of Hazardous Materials, 194, 385–392.

    Article  CAS  Google Scholar 

  • Song, Y. C., Woo, J. H., Park, S. H., & Kim, I. S. (2005). A study of the treating of antifouling paint waste from shipyard. Marine Pollution Bulletin, 51, 1048–1053.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., Chong, A., & Wong, Y. S. (2002). Removal of tributyltin (TBT) by live and dead microalgal cells. Marine Pollution Bulletin, 45, 362–371.

    Article  CAS  Google Scholar 

  • Tesfalidet, S. (2004). Screening of organotin compounds in the Swedish environment. Analytical Chemistry, Umeå University, Umeå, pp. 1–23.

  • Wahab, M. A., Jellali, S., & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology, 101, 5070–5075.

    Article  CAS  Google Scholar 

  • Weidenhaupt, A., Arnold, C., Müller, S. R., Haderlein, S. B., & Schwarzenbach, R. P. (1997). Sorption of organotin biocides to mineral surfaces. Environmental Science and Technology, 31, 2603–2609.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Olushola Sunday Ayanda wishes to thank Cape Peninsula University of Technology, Cape Town, South Africa for the 2012 and 2013 University CONFCOM award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olushola S. Ayanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayanda, O.S., Fatoki, O.S., Adekola, F.A. et al. Remediation of Tributyltin Contaminated Seawater by Adsorption Using nFe3O4, Activated Carbon and nFe3O4/Activated Carbon Composite Material. Water Air Soil Pollut 224, 1684 (2013). https://doi.org/10.1007/s11270-013-1684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1684-0

Keywords

Navigation