Skip to main content
Log in

Kinetic bacteriochlorophyll fluorometer

  • Technical Communication
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A pump and probe fluorometer with a laser diode as single light source has been constructed for measurement of fast induction and relaxation of the fluorescence yield in intact cells, chromatophores and isolated reaction centers of photosynthetic bacteria. The time resolution of the fluorometer is limited by the repetition time of the probing flashes to 20 μs. The apparatus offers high sensitivity, excellent performance and can become a versatile device for a range of demanding applications. Some of them are demonstrated here including fast and easy investigation of the (1) organization and redox state of the photosynthetic apparatus of the intact cells of different bacterial strains and mutants and (2) electron transfer reactions on donor and acceptor sides of isolated reaction centers. The compact design of the mechanics, optics, electronics, and data processing makes the device easy to use as outdoor instrument or to integrate into larger measuring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AQ:

Anthraquinone

BChl:

Bacteriochlorophyll

Bla. :

Blastochloris

Bpheo:

Bacteriopheophytine

D:

External electron donor to P+

F 0 :

Initial (dark) level of fluorescence

F v :

Variable fluorescence

LDAO:

N,N′-dimethyldodecylamine N-oxide

P:

Primary electron donor, a non-covalently linked bacteriochlorophyll dimer

PQ:

Plastoquinone

PS:

Photosystem

QA :

Primary quinone electron acceptor

QB :

Secondary quinone electron acceptor

Triton X-100:

Octylphenol polyethylene glycol ether

Rba. :

Rhodobacter

Rsp. :

Rhodospirillum

RC:

Reaction center

UQ10 :

Ubiquinone-50

References

  • Asztalos E, Maróti P (2009) Export or recombination of charges in reaction centers in whole cells of photosynthetic bacteria. Biochim Biophys Acta 1787:1444–1450

    Article  CAS  PubMed  Google Scholar 

  • Bina D (2009) Photosynthetic electron transport in purple bacteria: an in vivo spectroscopic study, Ph.D. Thesis, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic

  • Bina D, Litvin R, Vácha F, Siffel P (2006) New multichannel kinetic spectrophotometer–fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth Res 88:351–356

    Article  CAS  PubMed  Google Scholar 

  • Bina D, Litvin R, Vácha F (2009) Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria. Photosynth Res 99:115–125

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Delosme R (1967) Etude de l’induction de fluorescence des algues vertes et des chloroplastes au début d’une illumination intense. Biochim Biophys Acta 143:108–128

    Article  CAS  PubMed  Google Scholar 

  • Den Haan GA (1976) Chlorophyll-a fluorescence as a monitor for rapid reactions in system II of photosynthesis, Ph.D. Thesis, Krips Repro B.V. Meppel, Leiden, The Netherlands

  • Falkowski PG, Koblizek M, Gorbunov M, Kolber Z (2004) Development and application of variable chlorophyll fluorescence techniques in marine ecosystems. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, 19th edn. Springer, Dordrecht, The Netherlands, pp 757–778

    Google Scholar 

  • Gerencsér L, Laczkó G, Maróti P (1999) Unbinding of oxidized cytochrome c from photosynthetic reaction center of Rhodobacter sphaeroides is the bottleneck of fast turnover. Biochemistry 38(51):16866–16875

    Article  PubMed  Google Scholar 

  • Gerencsér L, Rinyu L, Kálmán L, Takahashi E, Wraight CA, Maróti P (2004) Competitive binding of quinone and antibiotic stigmatellin to reaction centers of photosynthesis bacteria. Acta Biologica Szegediensis 48(1–4):25–33

    Google Scholar 

  • Hoffmann W, Metzner H (1971) Fluorescence induction in photosynthetic bacteria. In: Forti G, Avron M, Melandri A (eds) In: Proceedings of the 2nd international congress on photosynthesis research, Dr. W. Junk N. V. Publishers, The Hague, Netherlands, pp 369–371

  • Hohmann-Marriott MF, Blankenship RE (2007) Variable fluorescence in green sulfur bacteria. Biochim Biophys Acta 1767:106–113

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Beal D, Frilley B (1980) A new spectrophotometric method for the study of photosynthetic reactions. J Chem Phys 77:209–216

    CAS  Google Scholar 

  • Kálmán L, Maróti P (1994) Stabilization of reduced primary quinone by proton uptake in reaction centers of Rhodobacter sphaeroides. Biochemistry 33:9237–9244

    Article  PubMed  Google Scholar 

  • Kálmán L, Maróti P (1997) Conformation-activated protonation in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides. Biochemistry 36:15269–15276

    Article  PubMed  Google Scholar 

  • Kingma H, Duysens LNM, Van Grondelle R (1983) Magnetic field stimulated luminescence and a matrix model for energy transfer. A new method for determining the redox state of the first quinone acceptor in the reaction center of whole cells of Rhodospirillum rubrum. Biochim Biophys Acta 725:434–443

    Article  CAS  Google Scholar 

  • Koblizek M, Kaftan D, Nedbal L (2001) On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynth Res 68:141–152

    Article  CAS  PubMed  Google Scholar 

  • Koblizek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231

    Article  CAS  PubMed  Google Scholar 

  • Kolber ZS, Prasil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  CAS  PubMed  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  CAS  PubMed  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Van Dover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  CAS  PubMed  Google Scholar 

  • Konorty M, Brumfeld V, Vermeglio A, Kahana N, Medalia O, Minsky A (2009) Photosynthetic system in Blastochloris viridis revisited. Biochemistry 48(22):4753–4761

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Robinson HR, Crofts AR (1990) A portable multi-flash kinetic fluorimeter for measurement of donor and acceptor reactions of Photosystem 2 in leaves of whole plants under field conditions. Photosynth Res 26:181–193

    Article  CAS  Google Scholar 

  • Laczkó G, Maróti P, Szalay L (1984) Short-lived fluorescence quenchers in PS II of green plants. In: Sybesma C (ed) Advances in photosynthesis research, vol I. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague-Boston, Lancaster, pp 159–162

    Google Scholar 

  • Laisk A, Nedbal L, Govindjee (eds) (2009) Photosynthesis in Silico: understanding complexity from molecules to ecosystems. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Lazar D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    Article  CAS  PubMed  Google Scholar 

  • Maróti P (2008) Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides. Eur Biophys J 37:1175–1184

    Article  PubMed  Google Scholar 

  • Maróti P, Lavorel J (1979) Intensity- and time-dependence of the carotenoid triplet quenching under rectangular illumination in Chlorella. Photochem Photobiol 29:1147–1151

    Article  Google Scholar 

  • Maróti P, Wraight CA (1988) Flash-induced H+ binding by bacterial photosynthetic reaction centers: comparison of spectrometric and conductometric methods. Biochim Biophys Acta 934:314–328

    Article  Google Scholar 

  • Maróti P, Wraight CA (2008) The redox midpoint potential of the primary quinone of reaction centers in chromatophores of Rhodobacter sphaeroides is pH independent. Eur Biophys J 37:1207–1217

    Article  PubMed  Google Scholar 

  • Maróti P, Laczkó G, Szalay L (1986) Fast detection of chlorophyll fluorescence yield of green plants. Sci Instrum (Nauch-Techn) 1:3–20

    Google Scholar 

  • Michel H, Epp O, Deisenhofer J (1986) Pigment protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J 5:2445–2451

    CAS  PubMed  Google Scholar 

  • Milano F, Gerencsér L, Agostiano A, Nagy L, Trotta M, Maróti P (2007) Mechanism of quinol oxidation by ferricenium produced by light excitation in reaction centers of photosynthetic bacteria. J Phys Chem B 111(16):4261–4270

    Article  CAS  PubMed  Google Scholar 

  • Moya I, Cerovic ZG (2004) Remote sensing of chlorophyll fluorescence: instrumentation and analysis. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, The Netherlands, pp 429–445

    Google Scholar 

  • Nagy L, Maróti P, Terazima M (2008) Spectrally silent light induced conformation change in photosynthetic reaction centers. FEBS Lett 582:3657–3662

    Article  CAS  PubMed  Google Scholar 

  • Nedbal L, Trtílek M, Kaftan D (1999) Flash fluorescence induction: a novel method to study regulation of Photosystem II. J Photochem Photobiol B 48:154–157

    Article  CAS  Google Scholar 

  • Okamura MY, Isaacson RA, Feher G (1975) Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci USA 72:3491–3495

    Article  CAS  PubMed  Google Scholar 

  • Osváth SZ, Laczkó G, Sebban P, Maróti P (1996) Electron transfer in reaction centers of Rhodobacter sphaeroides and Rhodobacter capsulatus monitored by fluorescence of the bacteriochlorophyll dimer. Photosynth Res 47:41–49

    Article  Google Scholar 

  • Papageorgiou G, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Rappaport F, Béal D, Joliot A, Joliot P (2007) On the advantages of using green light to study fluorescence yield changes in leaves. Biochim Biophys Acta 1767:56–65

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, The Netherlands, pp 279–319

    Google Scholar 

  • Siström WR (1962) The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J Gen Microbiol 28:607–616

    PubMed  Google Scholar 

  • Stein RR, Castellvi AL, Bogacz JP, Wraight CA (1984) Herbicide-quinone competition in the acceptor complex of photosynthetic reaction centers from Rhodopseudomonas sphaeroides: a bacterial model for PS-II-herbicide activity in plants. J Cell Biochem 24:243–259

    Article  CAS  PubMed  Google Scholar 

  • Tóth SZ (2006) Analysis and application of the fast Chl a fluorescence (OJIP) transient complemented with simultaneous 820 nm transmission measurements, Ph.D. Thesis, Université de Genéve

  • Tóth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    Article  PubMed  Google Scholar 

  • Trissl H-W (1996) Antenna organization in purple bacteria investigated by means of fluorescence induction curves. Photosynth Res 47:175–185

    Article  CAS  Google Scholar 

  • Trissl H-W, Law CJ, Cogdell RJ (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature. Biochim Biophys Acta 1412:149–172

    Article  CAS  PubMed  Google Scholar 

  • Turzó K, Laczkó G, Filus Z, Maróti P (2000) Quinone-dependent delayed fluorescence from reaction center of photosynthetic bacteria. Biophys J 79(1):14–25

    Article  PubMed  Google Scholar 

  • Vredenberg WJ (2008) Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. Photosynth Res 96(1):83–97

    Article  CAS  PubMed  Google Scholar 

  • Vredenberg WJ, Duysens LNM (1963) Transfer of energy from bacteriochlorophyll to a reaction center during bacterial photosynthesis. Nature 197:355–357

    Article  CAS  PubMed  Google Scholar 

  • Vredenberg WJ, Durchan M, Prasil O (2009) Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II. Biochim Biophys Acta 1787:1468–1478

    Article  CAS  PubMed  Google Scholar 

  • Yurkov V, Beatty T (1998) Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64:337–341

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Drs. Gábor Laczkó (University of Szeged) and Colin A. Wraight (University of Illinois, Urbana) for their valuable advises in the early phase of this project. Thanks to NKTH-OTKA (K-67850 and K-69018) and COST (CM 0902) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Maróti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocsis, P., Asztalos, E., Gingl, Z. et al. Kinetic bacteriochlorophyll fluorometer. Photosynth Res 105, 73–82 (2010). https://doi.org/10.1007/s11120-010-9556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9556-6

Keywords

Navigation