Skip to main content
Log in

Evaluation of the GastroPlus™ Advanced Compartmental and Transit (ACAT) Model in Early Discovery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The aim of this study was to evaluate the oral exposure predictions obtained early in drug discovery with a generic GastroPlus Advanced Compartmental And Transit (ACAT) model based on the in vivo intravenous blood concentration-time profile, in silico properties (lipophilicity, pKa) and in vitro high-throughput absorption-distribution-metabolism-excretion (ADME) data (as determined by PAMPA, solubility, liver microsomal stability assays).

Methods

The model was applied to a total of 623 discovery molecules and their oral exposure was predicted in rats and/or dogs. The predictions of Cmax, AUClast and Tmax were compared against the observations.

Results

The generic model proved to make predictions of oral Cmax, AUClast and Tmax within 3-fold of the observations for rats in respectively 65%, 68% and 57% of the 537 cases. For dogs, it was respectively 77%, 79% and 85% of the 124 cases. Statistically, the model was most successful at predicting oral exposure of Biopharmaceutical Classification System (BCS) class 1 compounds compared to classes 2 and 3, and was worst at predicting class 4 compounds oral exposure.

Conclusion

The generic GastroPlus ACAT model provided reasonable predictions especially for BCS class 1 compounds. For compounds of other classes, the model may be refined by obtaining more information on solubility and permeability in secondary assays. This increases confidence that such a model can be used in discovery projects to understand the parameters limiting absorption and extrapolate predictions across species. Also, when predictions disagree with the observations, the model can be updated to test hypotheses and understand oral absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACAT:

Advanced compartmental and transit

ADME:

Absorption, distribution, metabolism, excretion

AFE abs:

Absolute average fold error

AFE rel:

Relative average fold error

ASF:

Absorption scaling factor

AUC:

Area under the curve

AUClast :

Area under the curve to the last time point

BCS:

Biopharmaceutical classification system

CLint :

Intrinsic clearance

Cmax :

Maximum concentration

Cs,buffer,pH :

Buffer solubility at a given pH

Cs,GI,pH :

Solubility in the presence of bile salt at a given pH

FaSSIF:

Human fasted simulated intestinal fluid

GI:

Gastrointestinal

IV:

Intravenous

LC-MS/MS:

Liquid chromatography tandem mass spectometry

LW:

liver weight

MDCK:

Madin Darby canine kidney

MPPGL:

Microsomal protein per gram liver

MW:

Molecular weight

NIBR:

Novartis institutes for biomedical research

PAMPA:

Parallel artifical membrane permeability assay

PBPK:

Physiologically based pharmacokinetics

Peff:

Effective permeability

PK:

Pharmacokinetic

PO :

Per Os

PSA:

Polar surface area

Qh :

Hepatic blood flow

Saq :

Aqueous solubilization ratio

SIF:

Simulated intestinal fluid

SR:

Bile salt solubilization ratio

Tmax :

Time at which the concentration is maximum

REFERENCES

  1. Ballard P, Brassil P, Bui KH, Dolgos H, Petersson C, Tunek A, et al. The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug Metab Rev. 2012;44(3):224–52.

    Article  CAS  PubMed  Google Scholar 

  2. Parrott N, Paquereau N, Coassolo P, Lave T. An evaluation of the utility of physiologically based models of pharmacokinetics in early drug discovery. J Pharm Sci. 2005;94(10):2327–43.

    Article  CAS  PubMed  Google Scholar 

  3. Poulin P, Haddad S. Advancing prediction of tissue distribution and volume of distribution of highly lipophilic compounds from a simplified tissue-composition-based model as a mechanistic animal alternative method. J Pharm Sci. 2012;101(6):2250–61.

    Article  CAS  PubMed  Google Scholar 

  4. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  CAS  PubMed  Google Scholar 

  5. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  CAS  PubMed  Google Scholar 

  6. Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.

    Article  CAS  PubMed  Google Scholar 

  7. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013;41(12):1975–93.

    Article  CAS  PubMed  Google Scholar 

  8. Musther H, Olivares-Morales A, Hatley OJD, Liu B, Rostami Hodjegan A. Animal versus human oral drug bioavailability: do they correlate? Eur J Pharm Sci. 2014;57:280–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wajima T, Yano Y, Fukumura K, Oguma T. Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. J Pharm Sci. 2004;93(7):1890–900.

    Article  CAS  PubMed  Google Scholar 

  10. Vuppugalla R, Marathe P, He H, Jones RDO, Yates JWT, Jones HM, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 4: prediction of plasma concentration-time profiles in human from in vivo preclinical data by using the Wajima approach. J Pharm Sci. 2011;100(10):4111–26.

    Article  CAS  PubMed  Google Scholar 

  11. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:300–21.

    Article  CAS  PubMed  Google Scholar 

  12. De Buck SS, Sinha VK, Fenu LA, Gilissen RA, Mackie CE, Nijsen MJ. The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools. Drug Metab Dispos. 2007;35(4):649–59.

    Article  PubMed  Google Scholar 

  13. De Buck SS, Sinha VK, Fenu LA, Nijsen MJ, Mackie CE, Gilissen RAHJ. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispos. 2007;35(10):1766–80.

    Article  PubMed  Google Scholar 

  14. Poulin P, Jones RDO, Jones HM, Gibson CR, Rowland M, Chien JY, et al. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. 2011;100(10):4127–57.

    Article  CAS  PubMed  Google Scholar 

  15. Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5(5):760–75.

    Article  CAS  PubMed  Google Scholar 

  16. Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peters SA. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet. 2008;47(4):261–75.

    Article  CAS  PubMed  Google Scholar 

  18. Sjogren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernas H, et al. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci. 2013;49(4):679–98.

    Article  CAS  PubMed  Google Scholar 

  19. Faller B, Ottaviani G, Ertl P, Berellini G, Collis A. Evolution of the physicochemical properties of marketed drugs: can history foretell the future? Drug Discov Today. 2011;16(21–22):976–84.

    Article  CAS  PubMed  Google Scholar 

  20. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50 Suppl 1:S41–67.

    Article  CAS  PubMed  Google Scholar 

  21. Ungell AL, Nylander S, Bergstrand S, Sjoberg A, Lennernas H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87(3):360–6.

    Article  CAS  PubMed  Google Scholar 

  22. Gastroplus simulation software for drug discovery and development version 8.5, Ed. Simulations Plus. 2013.

  23. Lu AT, Frisella ME, Johnson KC. Dissolution modeling: factors affecting the dissolution rates of polydisperse powders. Pharm Res. 1993;10(9):1308–14.

    Article  CAS  PubMed  Google Scholar 

  24. Gedeck P, Lu Y, Skolnik S, Rodde S, Dollinger G, Jia W, et al. Benefit of retraining pKa models studied using internally measured data. J Chem Inf Model. 2015;55(7):1449–59.

    Article  CAS  PubMed  Google Scholar 

  25. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  CAS  PubMed  Google Scholar 

  26. Mithani SD, Bakatselou V, TenHoor CN, Dressman JB. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 1996;13(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem. 2001;44(6):923–30.

    Article  CAS  PubMed  Google Scholar 

  28. Ito K, Houston JB. Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes. Pharm Res. 2004;21(5):785–92.

    Article  CAS  PubMed  Google Scholar 

  29. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  30. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  31. Zaki NM, Artursson P, Bergstrom CAS. A modified physiological BCS for prediction of intestinal absorption in drug discovery. Mol Pharm. 2010;7(5):1478–87.

    Article  CAS  PubMed  Google Scholar 

  32. Heikkinen AT, Baneyx G, Caruso A, Parrott N. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates - an evaluation and case study using GastroPlus. Eur J Pharm Sci. 2012;47(2):375–86.

    Article  CAS  PubMed  Google Scholar 

  33. Heikkinen AT, Fowler S, Gray L, Li J, Peng Y, Yadava P, et al. In vitro to in vivo extrapolation and physiologically based modeling of cytochrome P450 mediated metabolism in beagle dog gut wall and liver. Mol Pharm. 2013;10(4):1388–99.

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka Y, Waki R, Nagata S. Species differences in the dissolution and absorption of griseofulvin and albendazole, biopharmaceutics classification system class II drugs, in the gastrointestinal tract. Drug Metab Pharmacokinet. 2013;28(6):485–90.

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka Y, Baba T, Tagawa K, Waki R, Nagata S. Prediction of oral absorption of low-solubility drugs by using rat simulated gastrointestinal fluids: the importance of regional differences in membrane permeability and solubility. J Pharm Pharm Sci. 2014;17(1):106–20.

    Article  CAS  PubMed  Google Scholar 

  36. Gao Y, Carr RA, Spence JK, Wang WW, Turner TM, Lipari JM, et al. A pH-dilution method for estimation of biorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Mol Pharm. 2010;7(5):1516–26.

    Article  CAS  PubMed  Google Scholar 

  37. Berghausen J, Seiler FH, Gobeau N, Faller B. Simulated rat intestinal fluid improves oral exposure prediction for poorly soluble compounds over a wide dose range. ADMET DMPK. 2016;4(1):35–53.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank all colleagues from Metabolism and Pharmacokinetics at NIBR and GNF, Global Discovery Chemistry and Analytical Sciences and Imaging who provided the critical data and their interpretation to build and evaluate the model. Also, the authors are grateful for the support and useful discussions with Pankaj Daga and Eric Martin, in NIBR Computer Aided Drug Discovery, and Gérard Flesch, in Novartis Pharma Integrated Quantitative Science.

This study was supported by NIBR. The authors have no conflicts of interest directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gobeau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 405 kb)

ESM 2

(XLSX 1.09 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobeau, N., Stringer, R., De Buck, S. et al. Evaluation of the GastroPlus™ Advanced Compartmental and Transit (ACAT) Model in Early Discovery. Pharm Res 33, 2126–2139 (2016). https://doi.org/10.1007/s11095-016-1951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1951-z

KEY WORDS

Navigation