Skip to main content
Log in

Effect of Addition of 4 % Al on the High Temperature Oxidation and Nitridation of a 20Cr–25Ni Austenitic Stainless Steel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In high temperature applications, the alumina forming austenites (AFA) have recently gained more focus. These utilise the advantageous effect of Al on oxidation resistance, and also have good mechanical properties. Two experimental alloys [20Cr–25Ni–1Mn–0.5Si–Fe (wt.%)] were prepared. To one of the alloys 3.77 wt.% Al was added. The alloys were studied in air and air/water at 700 °C and 1,000 °C, in a sulphidising/chlorinating environment at 700 °C and in a nitriding atmosphere at 1,000 °C. The time of exposure was 100 h, except for one 1,000 h exposure in air/water. At 700 °C in air and air/water, the AFA displayed lower mass gain than the reference material. After exposure in the sulphidising-chlorinating environment, the material displayed a surface alumina layer with some spallation. In air or air/water at 1,000 °C, internal aluminium nitride and alumina formation occurred, appreciably reducing the sound metal thickness. The nitridation was enhanced in the nitriding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. P. Kofstad, High temperature corrosion (Chap. 13), (Elsevier Applied Science Publishers Ltd, London, 1988).

  2. M. P. Brady, J. Magee, Y. Yamamoto, D. Helmick and L. Wang, Materials Science and Engineering A 590, 2014 (101–115).

    Article  Google Scholar 

  3. V. Ramakrishnan, J. A. McGurty and N. Jayaraman, Oxidation of Metals 30, 1988 (185).

    Article  Google Scholar 

  4. M. P. Brady, Y. Yamamoto, M. L. Santella and B. A. Pint, Scripta Materialia 57, 2007 (1117–1120).

    Article  Google Scholar 

  5. M. P. Brady, Y. Yamamoto, B. A. Pint, M. L. Santella, P. J. Maziasz and L. R. Walker, Materials Science Forum 595–598, 2008 (725–732).

    Article  Google Scholar 

  6. M. P. Brady, Y. Yamamoto, M. L. Santella and L. R. Walker, Oxidation of Metals 72, 2009 (311).

    Article  Google Scholar 

  7. Y. Yamamoto, M. Takeyama, Z. P. Lu, C. T. Liu, N. D. Evans, P. J. Maziasz and M. P. Brady, Intermetallics 16, 2008 (453).

    Article  Google Scholar 

  8. M. P. Brady, K. A. Unocic, M. J. Lance, M. L. Santella, Y. Yamamoto and L. R. Walker, Oxidation of Metals 75, 2011 (337–357).

    Article  Google Scholar 

  9. X. Xu, X. Zhang, G. Chen and Z. Lu, Materials Letters 65, 2011 (3285–3288).

    Article  Google Scholar 

  10. X. Xu, X. Zhang, X. Sun and Z. P. Lu, Corrosion Science 65, 2012 (317–321).

    Article  Google Scholar 

  11. The thermo-calc databank system, B. Sundman, B. Jansson, J.-O. Andersson. Calphad 9, (2), 1985 (153–190).

    Article  Google Scholar 

  12. H. Bei, Y. Yamamoto, M. P. Brady and M. L. Santella, Materials Science and Engineering A 527, 2010 (2079–2086).

    Article  Google Scholar 

  13. F. G. Wilson and T. Gladman, International Materials Reviews 33, (5), 1988 (221–286).

    Article  Google Scholar 

  14. D. V. V. Satyanarayana, G. Malakondaiah and D. S. Sarma, Materials Characterization 47, 2001 (61–65).

    Article  Google Scholar 

  15. Y. Yamamoto, G. Muralidharan and M. P. Brady, Scripta Materialia 69, 2013 (816–819).

    Article  Google Scholar 

  16. H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 44, 2002 (2635–2649).

    Article  Google Scholar 

  17. Q. Feng, B. Tryon, L. J. Carroll and T. M. Pollock, Materials Science and Engineering A 458, 2007 (184–194).

    Article  Google Scholar 

  18. H. Götlind, F. Liu, J.-E. Svensson, M. Halvarsson and L.-G. Johansson, Oxidation of Metals 67, 2007 (251–266).

    Article  Google Scholar 

  19. DICTRA, a tool for simulation of diffusional transformations in alloys, A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, Journal of Phase Equilibria, 21(3), 269 (2000).

  20. A. Donchev, B. Gleeson and M. Schütze, Intermetallics 11, 2011 (387–398).

    Article  Google Scholar 

  21. E. Reese and H. J. Grabke, Werkstoffe und Korrosion 44, 1993 (41–47).

    Article  Google Scholar 

  22. S. Han and D. J. Young, Oxidation of Metals 55, (3/4), 2001 (223–242).

    Article  Google Scholar 

  23. U. Krupp and H.-J. Christ, Metallurgical and Materials Transactions A 31A, 2001 (47–56).

    Google Scholar 

  24. M. Fujita, K. Inukai, S. Sakida, T. Nanba, J. Ommyoji, A. Yamaguchi and Y. Miura, Journal of the Society of Materials Science, Japan 56, (6), 2007 (526–530).

    Article  Google Scholar 

  25. P. Kofstad, High temperature corrosion (Chap. 1), (Elsevier Applied Science Publishers Ltd, London 1988).

  26. S. R. Meka, E. Bischoff, R. E. Schacherl and E. J. Mittemeier, Philosophical Magazine 92, (9), 2012 (1083–1105).

    Article  Google Scholar 

  27. K. S. Jung, R. E. Schacherl, E. Bischoff and E. J. Mittemeijer, Surface and Coatings Technology 204, 2010 (1942–1946).

    Article  Google Scholar 

  28. M. Imura, K. Nakajima, M. Liao, Y. Koide and H. Amano, Journal of Crystal Growth 312, (3), 2010 (368–372).

    Article  Google Scholar 

  29. S. Mohri, T. Yoshitake, T. Hara and K. Nagayama, Diamond and Related Materials 17, 2008 (1796–1799).

    Article  Google Scholar 

  30. K. Tjokra and D. J. Young, Oxidation of Metals 44, 1995 (453–474).

    Article  Google Scholar 

  31. X. G. Zheng and D. J. Young, Oxidation of Metals 42, (3/4), 1994 (163–190).

    Article  Google Scholar 

  32. U. Krupp and H.-J. Christ, Advanced Engineering Materials 1, (3–4), 1999 (194–198).

    Article  Google Scholar 

  33. F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals 44, (1–2), 1995 (113–145).

    Article  Google Scholar 

  34. M. Hättestrand, P. Larsson, G. Chai, J.-O. Nilsson and J. Odkvist, J-O. Materials Science and Engineering: A 499, (1–2), 2009 (489–492).

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed within the member programme IM-Tema 2 of Swerea KIMAB, and the support of Outokumpu Stainless AB, Sandvik Heating Technology AB and Sandvik Materials Technology AB is gratefully acknowledged. Also, the company representatives, Nicklas Folkeson, Thomas Helander, Mats Lundberg and Pascale Vangeli are thanked for valuable discussions during the project. Núria Fuertes is acknowledged for the hardness measurements, Thomas Helander is thanked for the equilibrium calculations using NiFe super database, Fredrik Lindberg for the FIB/EDS measurements and Mats Randelius for performing the GDOES analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragna Elger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elger, R., Pettersson, R. Effect of Addition of 4 % Al on the High Temperature Oxidation and Nitridation of a 20Cr–25Ni Austenitic Stainless Steel. Oxid Met 82, 469–490 (2014). https://doi.org/10.1007/s11085-014-9503-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9503-6

Keywords

Navigation