Skip to main content
Log in

Double role of polyethylene glycol in the microwaves-assisted non-hydrolytic synthesis of nanometric TiO2: oxygen source and stabilizing agent

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The microwaves-assisted reaction between titanium(IV) tetrachloride and polyethylene glycol (PEG) represents a novel non-aqueous sol–gel route for synthesizing surface-stabilized titanium dioxide nanoparticles. X-ray powder diffraction measurements showed the exclusive presence of anatase phase. Transmission electron microscopy investigations revealed that the particles are nearly uniform in shape with sizes ranging from 4 to 8 nm and a low degree of agglomeration. The presence of covalently bonded PEG chains on the particles surface has been shown by Fourier transform infrared (FT-IR) spectroscopy. This surface functionalization greatly enhances the dispersibility of the particles in water, as observed by dynamic light scattering and zeta-potential analyses. Furthermore, the investigation of the reaction by-products by a combination of FT-IR and high-performance liquid chromatography (HPLC-Mass) techniques allowed a deeper insight into the reaction mechanism suggesting a double role of PEG as a stabilizing agent and an oxygen source.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Scheme 2

Similar content being viewed by others

References

  • Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free nonhydrolytic synthesis. Chem Mater 22:4519–4521. doi:10.1021/Cm101191a

    Article  Google Scholar 

  • Acosta S, Corriu RJP, Leclercq D, Lefevre P, Mutin PH, Vioux A (1994) Preparation of alumina gels by a non-hydrolytic sol–gel processing method. J Non-Cryst Solids 170:234–242

    Article  Google Scholar 

  • Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239. doi:10.1021/Jp9535506

    Article  Google Scholar 

  • Arnal P, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1997) A solution chemistry study of nonhydrolytic sol–gel routes to titania. Chem Mater 9:694–698

    Article  Google Scholar 

  • Ba JH, Polleux J, Antonietti M, Niederberger M (2005) Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv Mater 17:2509–2512. doi:10.1002/Adma.200501018

    Article  Google Scholar 

  • Bilecka I, Niederberger M (2010) New developments in the nonaqueous and/or non-hydrolytic sol–gel synthesis of inorganic nanoparticles. Electrochim Acta 55:7717–7725. doi:10.1016/J.Electacta.12.066

    Article  Google Scholar 

  • Bilecka I, Elser P, Niederberger M (2009) Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano 3:467–477. doi:10.1021/Nn800842b

    Article  Google Scholar 

  • Bondioli F, Taurino R, Ferrari AM (2009) Functionalization of ceramic tile surface by sol–gel technique. J Colloid Interface Sci 334:195–201. doi:10.1016/J.Jcis.02.054

    Article  Google Scholar 

  • Bondioli F, Dinelli M, Giovanardi R, Giorgi M (2010) Functionalization of ceramic tile surface by soluble salts addition: Part II. Titanium and silver addition. J Eur Ceram Soc 30:1873–1878. doi:10.1016/J.Jeurceramsoc.03.008

    Article  Google Scholar 

  • Bu SJ, Jin ZG, Liu XX, Du HY, Cheng ZJ (2004) Preparation and formation mechanism of porous TiO2 films using PEG and alcohol solvent as double-templates. J Sol–Gel Sci Technol 30:239–248. doi:10.1023/B:Jsst.0000039531.31632.E6

    Article  Google Scholar 

  • Chen DH, Caruso RA (2013) Recent progress in the synthesis of spherical titania nanostructures and their applications. Adv Funct Mater 23:1356–1374. doi:10.1002/Adfm.201201880

    Article  Google Scholar 

  • Clavel G, Willinger MG, Zitoun D, Pinna N (2007) Solvent dependent shape and magnetic properties of doped ZnO nanostructures. Adv Funct Mater 17:3159–3169. doi:10.1002/Adfm.200601142

    Article  Google Scholar 

  • Corradi AB, Bondioli FB, Ferrari AM, Manfredini T (2006) Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method. Mater Res Bull 41:38–44. doi:10.1016/J.Materresbull.07.044

    Article  Google Scholar 

  • Debecker DP, Mutin PH (2012) Non-hydrolytic sol–gel routes to heterogeneous catalysts. Chem Soc Rev 41:3624–3650. doi:10.1039/C2cs15330k

    Article  Google Scholar 

  • Euliss LE, DuPont JA, Gratton S, DeSimone J (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35:1095–1104. doi:10.1039/b600913c

    Article  Google Scholar 

  • Gerrard W, Woodhead AH (1951) Interaction of alcohols with silicon tetrachloride. J Chem Soc 1951:519–522

    Article  Google Scholar 

  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. doi:10.1021/Cr00098a010

    Article  Google Scholar 

  • Hu MJ, Xu JJ, Gao JF, Yang SL, Wong JSP, Li RKY (2013) Benzyl alcohol-based synthesis of oxide nanoparticles: the perspective of S(N)1 reaction mechanism. Dalton Trans 42:9777–9784. doi:10.1039/C3dt50680k

    Article  Google Scholar 

  • José Velasco M, Rubio F, Rubio J, Oteo JL (1999) DSC and FT-IR analysis of the drying process of titanium alkoxide derived precipitates. Thermochim Acta 326:91–97. doi:10.1016/s0040-6031(98)00580-2

    Article  Google Scholar 

  • Kim JY, Kim SH, Lee HH, Lee K, Ma WL, Gong X, Heeger AJ (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576. doi:10.1002/Adma.200501825

    Article  Google Scholar 

  • Koziej D, Fischer F, Kranzlin N, Caseri WR, Niederberger M (2009) Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films. ACS Appl Mater Interface 1:1097–1104. doi:10.1021/Am9000584

    Article  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113. doi:10.1107/S0021889878012844

    Article  Google Scholar 

  • Leclercq D, Bourget L, Corriu RJP, Mutin PH, Vioux A (1998) Non-hydrolytic sol–gel routes to silica. J Non-Cryst Solids 242:81–91

    Article  Google Scholar 

  • Lide DR (2007) CRC handbook of chemistry and physics: 2006–2007. CRC Press, Boca Raton

  • Luo L, Bozyigit D, Wood V, Niederberger M (2013) High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem Mater 25:4901–4907. doi:10.1021/Cm4030149

    Article  Google Scholar 

  • Matijevic E (1993) Preparation and properties of uniform size colloids. Chem Mater 5:412–426. doi:10.1021/Cm00028a004

    Article  Google Scholar 

  • Messori M, Bondioli F, Dorigato A, Fabbri P, Pegoretti A (2008) High-density polyethylene reinforced with submicron titania particles. Polym Eng Sci 48:448–457. doi:10.1002/pen.20973

    Article  Google Scholar 

  • Morselli D, Messori M, Bondioli F (2011) Poly(methyl methacrylate)-TiO2 nanocomposite obtained by non-hydrolytic sol–gel synthesis. J Mater Sci 46:6609–6617. doi:10.1007/s10853-011-5610-9

    Article  Google Scholar 

  • Morselli D, Bondioli F, Fiorini M, Messori M (2012a) Poly(methyl methacrylate)-TiO2 nanocomposites obtained by non-hydrolytic sol–gel synthesis: the innovative tert-butyl alcohol route. J Mater Sci 47:7003–7012. doi:10.1007/s10853-012-6651-4

    Article  Google Scholar 

  • Morselli D, Bondioli F, Sangermano M, Messori M (2012b) Photo-cured epoxy networks reinforced with TiO2 in situ generated by means of non-hydrolytic sol–gel process. Polymer 53:283–290. doi:10.1016/j.polymer.2011.12.006

    Article  Google Scholar 

  • Morselli D, Bondioli F, Sangermano M, Roppolo I, Messori M (2014) Epoxy resins reinforced with TiO2 generated by nonhydrolytic sol–gel process. J Appl Polym Sci. doi:10.1002/app.40470

    Google Scholar 

  • Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596. doi:10.1021/Cm802348c

    Article  Google Scholar 

  • Nair GR, Samdarshi SK, Boury B (2013) Surface mineralization of cellulose by metal chloride: an original pathway for the synthesis of hierarchical urchin and needle carpetlike TiO2 superstructures. Eur J Inorg Chem 2013:5303–5310. doi:10.1002/ejic.201300669

    Article  Google Scholar 

  • Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800. doi:10.1021/ar600035e

    Article  Google Scholar 

  • Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J 12:7282–7302

    Article  Google Scholar 

  • Niederberger M, Garnweitner G, Buha J, Polleux J, Ba JH, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol–Gel Sci Techn 40:259–266. doi:10.1007/S10971-006-6668-8

    Article  Google Scholar 

  • Niederberger M, Garnweitner G, Ba JH, Polleux J, Pinna N (2007) Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals. Int J Nanotechnol 4:263–281

    Article  Google Scholar 

  • Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi:10.1038/353737a0

    Article  Google Scholar 

  • Paderni K, Morselli D, Bondioli F, Luyt AS, Mokhothu TH, Messori M (2013) EPDM rubber reinforced with titania generated by nonhydrolytic sol–gel process. Polym Eng Sci. doi:10.1002/pen.23805

    Google Scholar 

  • Pinna N (2007) The “benzyl alcohol route’’: an elegant approach towards organic–inorganic hybrid nanomaterials. J Mater Chem 17:2769–2774. doi:10.1039/B702854g

    Article  Google Scholar 

  • Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304. doi:10.1002/Anie.200704541

    Article  Google Scholar 

  • Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005a) A general nonaqueous route to binary metal oxide nanocrystals involving a C–C bond cleavage. J Am Chem Soc 127:5608–5612. doi:10.1021/Ja042323r

    Article  Google Scholar 

  • Pinna N, Garnweitner G, Beato P, Niederberger M, Antonietti M (2005b) Synthesis of yttria-based crystattine and lamellar nanostructures and their formation mechanism. Small 1:112–121. doi:10.1002/smll.200400014

    Article  Google Scholar 

  • Pinna N, Karmaoui M, Willinger MG (2011) The “benzyl alcohol route”: an elegant approach towards doped and multimetal oxide nanocrystals. J Sol–Gel Sci Technol 57:323–329. doi:10.1007/S10971-009-2111-2

    Article  Google Scholar 

  • Quagliarini E, Bondioli F, Goffredo GB, Cordoni C, Munafo P (2012a) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57. doi:10.1016/J.Conbuildmat.07.006

    Article  Google Scholar 

  • Quagliarini E, Bondioli F, Goffredo GB, Licciulli A, Munafo P (2012b) Smart surfaces for architectural heritage: preliminary results about the application of TiO2-based coatings on travertine. J Cult Herit 13:204–209. doi:10.1016/J.Culher.10.002

    Article  Google Scholar 

  • Rao CNR, Raveau B (1998) Transition metal oxides: structure, properties, and synthesis of ceramic oxides. Wiley, New York

    Google Scholar 

  • Ridge D, Todd M (1949) Studies in the formation mechanisms of alkyl orthosilicates. J Chem Soc 1949:2637–2640

    Article  Google Scholar 

  • Shin Y, Lee D, Lee K, Ahn KH, Kim B (2008) Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications. J Ind Eng Chem 14:515–519. doi:10.1016/j.jiec.2008.02.002

    Article  Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New York (U.S)

    Google Scholar 

  • Sudha M, Senthilkumar S, Hariharan R, Suganthi A, Rajarajan M (2013) Synthesis, characterization and study of photocatalytic activity of surface modified ZnO nanoparticles by PEG capping. J Sol–Gel Sci Technol 65:301–310. doi:10.1007/S10971-012-2936-y

    Article  Google Scholar 

  • Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc 121:1613–1614

    Article  Google Scholar 

  • Vioux A (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9:2292–2299

    Article  Google Scholar 

  • Wang WZ, Zhuang Y, Li L (2008) Structure and size effect of CuO nanowires prepared by low temperature solid-phase process. Mater Lett 62:1724–1726. doi:10.1016/J.Matlet.09.086

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Corrado Sciancalepore is acknowledged for the TEM technical support that was greatly appreciated. We also would like to thank Dr. Diego Pinetti for helpful discussions about the mass spectra analysis and Dr. Guido Ori for his help in creating the graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Morselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morselli, D., Niederberger, M., Bilecka, I. et al. Double role of polyethylene glycol in the microwaves-assisted non-hydrolytic synthesis of nanometric TiO2: oxygen source and stabilizing agent. J Nanopart Res 16, 2645 (2014). https://doi.org/10.1007/s11051-014-2645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2645-2

Keywords

Navigation