Skip to main content
Log in

Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

High beta-glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to their well-known health benefits. Quantitative trait loci (QTL) associated with BG have been reported in traditional barley varieties with intermediate levels of BG, but no QTL studies have been reported in hull-less barley varieties with high BG levels. In this study, QTL analysis was performed to identify markers linked to high BG and amylose in the hull-less barley varieties Falcon (4–5 % BG) and Azhul (8–9 % BG) using a newly developed recombinant inbred line (RIL) mapping population. The population was grown over 3 years (2007–2009) at sites in Yuma, AZ, USA; Leeston, New Zealand; Aberdeen, ID, USA; and Tetonia, ID, USA. We identified 17 QTL associated with either BG or amylose content. QTL contributing to high BG were located on chromosomes 3H, 4H, 5H, 6H and 7H, while QTL contributing to amylose were located on chromosomes 1H, 5H and 7H. Additionally, we identified QTL affecting both BG and amylose content located on chromosomes 1H and 7H. Transgressive segregation was observed in some of the RILs and exceptions were discovered contradicting an inverse relationship between BG and amylose. This work will provide the basis for gene cloning and marker-assisted selection in combination with traditional field selection to improve barley breeding for high BG content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson AAM, Elfverson C, Andersson R, Regner S, Aman P (1999) Chemical and physical characteristics of different barley samples. J Sci Food Agric 79:979–986

    Article  CAS  Google Scholar 

  • Bhatty RS (1999) Beta-glucan and flour yield of hull-less barley. Cereal Chem 76:314–315

    Article  CAS  Google Scholar 

  • Bird AR, Jackson M, King RA, Davies DA, Usher S, Topping DL (2004) A novel high-amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. Br J Nutr 92:607–615

    Article  PubMed  CAS  Google Scholar 

  • Bourdon I, Yokoyama W, Davis P, Hudson C, Backus R, Richter D, Knuckles B, Schneeman BO (1999) Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan. Am J Clin Nutr 69:55–63

    PubMed  CAS  Google Scholar 

  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley: quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol 146:1821–1833

    Article  PubMed  CAS  Google Scholar 

  • Cavallero A, Empilli S, Brighenti F, Stanco AM (2002) High (1 → 3, 1 → 4)-β-glucan barley fractions in bread making and their effects on human glycemic response. J Cereal Sci 36:59–66

    Article  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582

    Article  Google Scholar 

  • Coventry SJ, Collins HM, Barr AR, Jefferies SP, Chalmers KJ, Logue SJ, Langridge P (2003) Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L.). Aust J Agric Res 54:1241–1250

    Article  CAS  Google Scholar 

  • Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP (2004) Effects of moderate exercise and oat beta-glucan on innate immune function and susceptibility to respiratory infection. Am J Physiol 286:R366–R375

    CAS  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891

    PubMed  CAS  Google Scholar 

  • Gutierrez L, Cuesta-Marcos A, Castro AJ, von Zitzewitz J, Schmitt M, Hayes PM (2011) Association mapping of malting quality quantitative trait loci in winter barley: positive signals from small germplasm arrays. Plant Genome 4:256–272

    Article  Google Scholar 

  • Han F, Ullrich SE, Chirat S, Menteur S, Jestin L, Sarrafi A, Hayes PM, Jones BL, Blake TK, Wesenberg DM, Kleinhofs A, Kilian A (1995) Mapping of β-glucan content and β-glucanase activity loci in barley grain and malt. Theor Appl Genet 91:921–927

    Article  CAS  Google Scholar 

  • Hang A, Obert D, Gironella AN, Burton CS (2007) Barley amylose and beta glucan: their relationship to protein, agronomic traits and environmental factors. Crop Sci 47:1754–1760

    Article  CAS  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  Google Scholar 

  • Hu G, Burton C (2008) Modification of standard enzymatic protocol to a cost-efficient format for mixed-linkage (1 → 3,1 → 4)-β-D-glucan measurement. Cereal Chem 85:648–653

    Article  CAS  Google Scholar 

  • Hu G, Burton C, Yang C (2010) Efficient measurement of amylose content in cereal grains. J Cereal Sci 51:35–40

    Article  CAS  Google Scholar 

  • Izydorczyk MS, Storsley J, Labossiere D, MacGregor AW, Rossnagel BG (2000) Variation in total and solube beta-glucan content in hulless barley: effects of thermal, physical, and enzymatic treatments. J Agric Food Chem 48:982–989

    Article  PubMed  CAS  Google Scholar 

  • Jackson EW, Obert DE, Islamovic E, Oliver RE, Miclaus KJ, Jellen EN, Maughan PJ, Hang A, Chao S, Lazo GR, Harrison SA, Ibrahim A, Hu G, Marshall JM (2011) The impact of problematic markers on accurate linkage map construction and QTL discovery: a study on barley (Hordeum vulgare L.) height, spike length and spike angle (submitted)

  • Karmally W, Montez MG, Palmas W, Martinez W, Branstetter A, Ramakrishnan R, Holleran SR, Haffner SM, Ginsberg HN (2005) Cholesterol-lowering benefits of oat-containing cereal in Hispanic Americans. J Am Diet Assoc 105:967–970

    Article  PubMed  CAS  Google Scholar 

  • Keenan JM, Poins JJ, Frazel C, Morgan A, Turnquist L (2002) Oat ingestion reduces systolic and diastolic blood pressure in patients with mild or borderline hypertension: a pilot trial. J Fam Pract 51:369–374

    PubMed  Google Scholar 

  • Kim HS, Park KG, Baek SB, Kim JG (2011) Inheritance of (1–3)(1–4)-beta-D-glucan content in barley (Hordeum vulgare L.). J Crop Sci Biotech 14:239–245

    Article  Google Scholar 

  • King RA, Noakes M, Bird AR, Morell MK, Topping DL (2008) An extruded breakfast cereal made from a high amylose barley cultivar has a low glycemic index and lower plasma insulin response than one made from a standard barley. J Cereal Sci 48:526–530

    Article  CAS  Google Scholar 

  • Li Z, Li D, Du X, Wang H, Larroque O, Jenkins CLD, Jobling SA, Morell MK (2011) The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes. J Exp Bot 62:5217–5231. doi:10.1093/jxb/err239

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, Hennekens CH, Willett WC (1999) Whole-grain consumption and risk of coronary heart disease, results from the nurses’ health study. Am J Clin Nutr 70:412–419

    PubMed  CAS  Google Scholar 

  • Ludwig DS, Pereira MA, Kroenke CH, Hilner JE, Van Horn L, Slattery ML, Jacobs DR Jr (1999) Dietary fiber, weight gain and cardiovascular disease risk factors in young adults. JAMA 282:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Mather DE, Tinker NA, LaBerge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KG, Irvine RB, Falk DE, Kasha KJ (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37:544–554

    Article  CAS  Google Scholar 

  • McIntosh GH, Whyte J, McArthur R, Nestel PJ (1991) Barley and wheat foods: influence on plasma cholesterol concentrations in hypercholesterolemic men. Am J Clin Nutr 53:1205–1209

    PubMed  CAS  Google Scholar 

  • Mcmullen MS, Doehlert DC, Miller JD (2005) Registration of ‘HiFi’ oat. Crop Sci 45:1664

    Article  Google Scholar 

  • Merritt NR (1967) A new strain of barley with starch of high amylose content. J Inst Brew 73:583–585

    CAS  Google Scholar 

  • Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR (2000) Carbohydrates, dietary fiber, and incidence of type 2 diabetes in older women. Am J Clin Nutr 71:921–930

    PubMed  CAS  Google Scholar 

  • Molina-Cano JL, Moralejo M, Elia M, Munoz P, Russell JR, Perez-Vendrell AM, Ciudad F, Swanston JS (2007) QTL analysis of a cross between European and North American malting barleys reveals a putative candidate gene for beta glucan content on chromosome 1H. Mol Breed 19:275–284

    Article  CAS  Google Scholar 

  • Obert DE, Hang A, Hu G, Burton C, Satterfield K, Evans CP, Marshall JM, Jackson EW (2011) Registration of ‘Transit’ high beta glucan spring barley. J Plant Registr 5:270–272

    Article  Google Scholar 

  • Patron NJ, Smith AM, Fahy BF, Hylton CM, Naldrett MJ, Rossnagel BG, Denyer K (2002) The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5′-non-coding region. Plant Physiol 130:190–198

    Article  PubMed  CAS  Google Scholar 

  • Rohde W, Becker D, Salamini F (1988) Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Res 16:7185–7186

    Article  PubMed  CAS  Google Scholar 

  • Schondelmaier J, Jacobi A, Fischbeck G, Jahoor A (1992) Genetical studies on the mode of inheritance and localization of the amo1 (high amylose) gene in barley. Plant Breed 4:274–280

    Article  Google Scholar 

  • Szucs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay LV, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134–140

    Article  CAS  Google Scholar 

  • Thorburn A, Muir J, Proietto J (1993) Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 42:780

    Article  PubMed  CAS  Google Scholar 

  • Tonooka T, Aoki E, Yoshioka T, Taketa S (2009) A novel mutant gene for (1–3, 1–4)-β-glucanless grain on barley (Hordeum vulgare L.) chromosome 7H. Breed Sci 59:47–54

    Article  CAS  Google Scholar 

  • Topping DL, Morell MK, King RA, Li Z, Bird AR, Noakes M (2003) Resistant starch and health—Himalaya 292, a novel barley cultivar to deliver benefits to consumers. Starch/Starke 55:539–545

    Article  CAS  Google Scholar 

  • Urooj A, Vinutha SR, Puttaraj S, Leelavathy K, Haridasa PR (1998) Effect of barley incorporation in bread on its quality and glycemic responses in diabetics. Int J Food Sci 49:265

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng Z (2005) Windows QTL Cartographer 2.5. Available at statgen.ncsu.edu/qtlcart/WQTL-Cart.htm. Dept. Statistics, North Carolina State University, Raleigh

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Idaho Barley Commission and CSREES Barley for Rural Development Grant. We acknowledge Irene Shackelford, Robert Campbell and the staff of the University of Idaho Research and Extension Experiment Stations in Tetonia and Aberdeen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir Islamovic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islamovic, E., Obert, D.E., Oliver, R.E. et al. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.). Mol Breeding 31, 15–25 (2013). https://doi.org/10.1007/s11032-012-9764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9764-1

Keywords

Navigation