Skip to main content
Log in

Signal Improvement Strategies for Fluorescence Detection of Biomacromolecules

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

For analysis of biomacromolecules, a sensitive, specified and reliable method is indispensable. Fluorescent dyes or fluorophores have been widely used as mediums to obtain readout signals in various assays or bioimaging because of their versatilities such as biocompatibility. Those fluorescent dyes based techniques manipulate many molecular interactions for analysis of biomacromolecules including antibody-protein interaction, base complementation, glycan-lectin interaction, etc. The strategies to manipulate those molecular interactions are various and always updating due to the development of biotechnological tools and instruments. In this minireview, we summarize the state of the art of signal improvement techniques for fluorescence detection of biomacromolecules especially proteins and nucleic acids. We focus on the principle and mechanism of those techniques for fluorescence detection of biomacromolecules. We also discuss the future trend of the techniques for fluorescence detection of biomacromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vert M, Doi Y, Hellwich KH, et al. (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84(2):377–408

    Article  CAS  Google Scholar 

  2. Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184(suppl 21) (4699)):1648–1649

    Article  CAS  PubMed  Google Scholar 

  3. B A, C L, M TJ, W B, G JE (2011) Bicinchoninic acid (BCA) assay in low volume. Anal Biochem 410(2):310–312

    Article  Google Scholar 

  4. Walker JM (1994) The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. Humana Press, Totowa

    Book  Google Scholar 

  5. Rezaei B, Shahshahanipour M, Ensafi AA (2015) A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots. Luminescence. doi:10.1002/bio.3058

  6. Li W, Hou T, Wu M, Li F (2016) Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide. Talanta 148:116–121

    Article  CAS  PubMed  Google Scholar 

  7. Duan Y, Liu M, Sun W, Wang M, Liu S, Li QX (2009) Recent Progress on Synthesis of Fluorescein probes. Mini Rev Org Chem 6(1):35–43(39)

    Article  CAS  Google Scholar 

  8. Grimm JB, Heckman LM, Lavis LD (2013) The chemistry of small-molecule fluorogenic probes. Prog Mol Biol Transl Sci 113:1–34

    Article  CAS  PubMed  Google Scholar 

  9. Grange RD, Thompson JP, Lambert DG (2014) Radioimmunoassay, enzyme and non-enzyme-based immunoassays. Br J Anaesth 112(2):213–216

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Park Y, Kim J, Han SJ (2014) A fluorescence-based assay for measuring the redox potential of 5-lipoxygenase inhibitors. PLoS One 9(2):e87708

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen Z, Tan Y, Zhang C, et al. A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosens Bioelectron. Jun 15 2014; 56:46–50.

  12. Brandon DL (2011) Detection of ricin contamination in ground beef by electrochemiluminescence immunosorbent assay. Toxicon 3(4):398–408

    CAS  Google Scholar 

  13. Guerrini L, Krpetic Z, van Lierop D, Alvarez-Puebla RA, Graham D (2015) Direct surface-enhanced Raman scattering analysis of DNA duplexes. Angew Chem Int Ed Eng 54(4):1144–1148

    Article  CAS  Google Scholar 

  14. Ingle JD, Crouch SR (1971) Chem. A. signal-to-noise ratio comparison of photomultipliers and phototubes. Anal Chem 42(10):135–140

    Google Scholar 

  15. Czanner G, Sarma SV, Ba D, et al. Measuring the signal-to-noise ratio of a neuron. Proc Natl Acad Sci U S A. 9 2015; 112(23):7141–7146.

  16. Yang Y, Merrill EC (2015) The impact of signal-to-noise ratio on contextual cueing in children and adults. J Exp Child Psychol 132:65–83

    Article  PubMed  Google Scholar 

  17. Straus TM (1974) The Relationship between the NCTA, EJA, and CCIR Definitions of Signal-to-Noise Ratio. IEEE Trans Broadcast bc-20(3):36–41

    Article  Google Scholar 

  18. Welvaert M, Rosseel Y (2013) On the definition of signal-to-noise ratio and contrast-to-noise ratio for FMRI data. PLoS One 8(11):e77089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Ed Eng 45(37):6104–6117

    Article  CAS  Google Scholar 

  20. Vogel SS, Thaler C, SV K (2006) Fanciful FRET. Sci STKE 2006(331):re2

    PubMed  Google Scholar 

  21. Stobiecka M (2014) Novel plasmonic field-enhanced nanoassay for trace detection of proteins. Biosens Bioelectron 55(15):379–385

    Article  CAS  PubMed  Google Scholar 

  22. Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7(1):47–57

    Article  CAS  PubMed  Google Scholar 

  23. Koushik S, Vogel S (2008) Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements. J Biomed Opt 13(3):711–736

    Article  Google Scholar 

  24. Valeur B, Berberan-Santos MN (2012) Excitation energy transfer. Wiley-VCH Verlag GmbH & Co. KGaA, Molecular Fluorescence, pp. 213–261

    Google Scholar 

  25. Braslavsky SE. Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem. 792007:293.

  26. Zhang J, Mi C, Wu H, Huang H, Mao C, Xu S (2012) Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection. Anal Biochem 421(2):673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beutler M, Heintzmann R (2005) Förster resonance energy transfer. Springer, Berlin Heidelberg

    Google Scholar 

  28. Hsiang JC, Jablonski AE, Dickson RM (2014) Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background. Acc Chem Res 47(5):1545–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keij JF, Steinkamp JA (1998) Flow cytometric characterization and classification of multiple dual-color fluorescent microspheres using fluorescence lifetime. Cytometry 33(3):318–323

    Article  CAS  PubMed  Google Scholar 

  30. Lawrie GA, Battersby BJ, Trau M (2003) Synthesis of Optically complex Core–Shell colloidal Suspensions: Pathways to multiplexed biological screening. Adv Funct Mater 13(11):887–896

    Article  CAS  Google Scholar 

  31. Day R (2001) A P, F S. fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25(1):4–18

    Article  CAS  PubMed  Google Scholar 

  32. Rajesh Babu S, Ammasi P (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160(5):629–633

    Article  Google Scholar 

  33. Wang SE, Si S (2013) A fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). Appl Spectrosc 67(11):1270–1274

    Article  CAS  PubMed  Google Scholar 

  34. Schweizer S, Henke B, Ahrens B, et al. Progress on up- and down-converted fluorescence in rare-doped fluorozirconate-based glass ceramics for high efficiency solar cells: a doi: 10.1117/12.853943.2010:77250X-77250X-77258.

  35. Li H, Sun DE, Liu Y, Liu Z (2013) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55c(9):149–156

    Google Scholar 

  36. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854

    Article  CAS  PubMed  Google Scholar 

  37. Rantanen T, Jarvenpaa M-L, Vuojola J, Arppe R, Kuningas K, Soukka T (2009) Upconverting phosphors in a dual-parameter LRET-based hybridization assay. Analyst 134(8):1713–1716

    Article  CAS  PubMed  Google Scholar 

  38. Wu S, Duan N, Li X, et al. (2013) Homogenous detection of fumonisin B1 with a molecular beacon based on fluorescence resonance energy transfer between NaYF4: Yb, Ho upconversion nanoparticles and gold nanoparticles. Talanta 116:611–618

    Article  CAS  PubMed  Google Scholar 

  39. Zhao X, Li S, Xu L, et al. (2015) Up-conversion fluorescence “off-on” switch based on heterogeneous core-satellite assembly for thrombin detection. Biosens Bioelectron 70:372–375

    Article  CAS  PubMed  Google Scholar 

  40. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11(Elsevier):227–256

    Article  CAS  PubMed  Google Scholar 

  41. Zhao H, Chen Y, Zhao H, et al (2016) Autofluorescence of eccrine sweat glands. Skin Res Technol 22(1):98–103

  42. Perfetto SP, Roederer M (2007) Increased immunofluorescence sensitivity using 532 nm laser excitation. Cytometry Part A 71A(2):73–79

    Article  CAS  Google Scholar 

  43. Wei Y, Lu F, Zhang X, Chen D (2008) Polyol-Mediated Synthesis and luminescence of Lanthanide-Doped Nayf4 Nanocrystal upconversion phosphors. J Alloys Compd 455:376–384

    Article  CAS  Google Scholar 

  44. Hampl J, Hall M, Mufti NA, et al. (2001) Upconverting phosphor reporters in immunochromatographic assays. Anal Biochem 288(2):176–187

    Article  CAS  PubMed  Google Scholar 

  45. van de Rijke F, Zijlmans H, Shang L, et al. (2001) Up-converting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 19(3):273–276

    Article  Google Scholar 

  46. Hulspas R, O'Gorman MR, Wood BL, Gratama JW, Sutherland DR (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry. Part B, Clinical Cytometry 76(6):355–364

    Article  Google Scholar 

  47. Devaraj NK, Miller GP, Wataru E, et al. (2005) Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers. J Am Chem Soc 127(24):8600–8601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Srikant P, Anup KS, James RM, Paul MD (2004) Dendrimer-activated surfaces for high density and high activity protein chip applications. Langmuir: The ACS J Surf Colloids 20(15):6075–6079

    Article  Google Scholar 

  49. Yu X, Xiao J, Dang F (2015) Surface modification of poly(dimethylsiloxane) using Ionic complementary peptides to minimize nonspecific protein adsorption. Langmuir: The ACS J Surf Colloids 31(21):5891–5898

    Article  CAS  Google Scholar 

  50. Wang J, Sun H, Li J, Dong D, Zhang Y, Yao F (2015) Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption. Carbohydr Polym 117:384–391

    Article  CAS  PubMed  Google Scholar 

  51. Shiddiky MJA, Kithva PH, Kozak D, Trau M (2012) An electrochemical immunosensor to minimize the nonspecific adsorption and to improve sensitivity of protein assays in human serum. Biosens Bioelectron 38(1):132–137

    Article  CAS  PubMed  Google Scholar 

  52. Estephan ZG, Schlenoff JB (2013) Zwitterion siloxane to passivate silica against nonspecific protein adsorption. Methods Mol Biol (Clifton, NJ) 1025:201–205

    Article  CAS  Google Scholar 

  53. Charles PT, Stubbs VR, Soto CM, Martin BD, White BJ, Taitt CR (2009) Reduction of non-specific protein adsorption using poly(ethylene) glycol (PEG) modified Polyacrylate hydrogels in immunoassays for Staphylococcal Enterotoxin B detection. Sensors 9(1):645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bi H, Meng S, Li Y, et al. (2006) Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab Chip 6(6):769–775

    Article  CAS  PubMed  Google Scholar 

  55. Zhang W, Ang WT, Xue CY, Yang KL (2011) Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants. ACS Appl Mater Interfaces 3(9):3496–3500

    Article  CAS  PubMed  Google Scholar 

  56. Huber D, Rudolf J, Ansari P, et al. (2009) Effectiveness of natural and synthetic blocking reagents and their application for detecting food allergens in enzyme-linked immunosorbent assays. Anal Bioanal Chem 394(2):539–548

    Article  CAS  PubMed  Google Scholar 

  57. Frederix F, Bonroy K, Reekmans G, et al. (2004) Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents. J Biochem Biophys Methods 58(1):67–74

    Article  CAS  PubMed  Google Scholar 

  58. Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W (2016) Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol 36(3):465–481

  59. Chen X, Lin C, Chen Y, Wang Y, Chen X (2016) A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise. Biosens Bioelectron 77:486–490

    Article  CAS  PubMed  Google Scholar 

  60. Kong L, Xu J, Xu Y, Xiang Y, Yuan R, Chai Y (2013) A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR green I dye. Biosens Bioelectron 42:193–197

    Article  CAS  PubMed  Google Scholar 

  61. Zheng A, Luo M, Xiang D, Xiang X, Ji X, He Z (2013) A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR green I. Talanta 114:49–53

    Article  CAS  PubMed  Google Scholar 

  62. Ma C, Jin S, Liu H, et al. (2015) Thioflavin T as a fluorescence probe for label-free detection of T4 polynucleotide kinase/phosphatase and its inhibitors. Mol Cell Probes 29(6):500–502

    Article  CAS  PubMed  Google Scholar 

  63. Sabharwal NC, Savikhin V, Turek-Herman JR, Nicoludis JM, Szalai VA, Yatsunyk LA (2014) N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. The FEBS J 281(7):1726–1737

    Article  CAS  PubMed  Google Scholar 

  64. Feng C, Zhu J, Sun J, Jiang W, Wang L (2015) Hairpin assembly circuit-based fluorescence cooperative amplification strategy for enzyme-free and label-free detection of small molecule. Talanta 143:101–106

    Article  CAS  PubMed  Google Scholar 

  65. Wang K, Jian L, Yang X, et al. (2015) A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron 63:172–177

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Liu B (2008) ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene. Analyst 133(11):1593–1598

    Article  CAS  PubMed  Google Scholar 

  67. Liu S, Na W, Pang S, Shi F, Su X (2014) A label-free fluorescence detection strategy for lysozyme assay using CuInS(2) quantum dots. Analyst 139(12):3048–3054

    Article  CAS  PubMed  Google Scholar 

  68. Li Y-H, Zhang L, Huang J, Liang R-P, Qiu J-D (2013) Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem Commun 49(45):5180–5182

    Article  CAS  Google Scholar 

  69. Ma K, Lu L, Qi Z, Feng J, Zhuo C, Zhang Y (2015) In situ induced metal-enhanced fluorescence: A new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood. Biosens Bioelectron 68:648–653

    Article  CAS  PubMed  Google Scholar 

  70. Wang L, Zhang Y, Liu G, Zhang C, Wang S (2014) A time-resolved fluorescence immunoassay for the ultrasensitive determination of diethylstilbestrol based on the double-codified gold nanoparticles. Steroids 89:41–46

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Q, Deng T, Li J, Xu W, Shen G, Yu R (2015) Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum. Biosens Bioelectron 68:253–258

    Article  CAS  PubMed  Google Scholar 

  72. Zhang L, Lei J, Liu J, Ma F, Ju H (2015) Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 67:323–334

    Article  CAS  PubMed  Google Scholar 

  73. Wang K, Zhang K, Lv Z, Zhu X, Zhu L, Zhou F (2014) Ultrasensitive detection of microRNA with isothermal amplification and a time-resolved fluorescence sensor. Biosens Bioelectron 57:91–95

    Article  CAS  PubMed  Google Scholar 

  74. Sikora J, Cyrankiewicz M, Wybranowski T, et al. (2015) Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products. J Biomed Opt 20(5):051039

    Article  PubMed  Google Scholar 

  75. Cohen N, Mechaly A, Mazor O, Fisher M, Zahavy E (2014) Rapid homogenous time-resolved fluorescence (HTRF) immunoassay for anthrax detection. J Fluoresc 24(3):795–801

    Article  CAS  PubMed  Google Scholar 

  76. Smith AW (2015) . Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy. Methods Mol Biol (Clifton, NJ) 1271:205–219

  77. Richards CI, Hsiang JC, Dickson RM (2010) Synchronously amplified fluorescence image recovery (SAFIRe). J Phys Chem B 114(1):660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Glavan AC, Niu J, Chen Z, et al (2016) Analytical devices based on direct synthesis of DNA on paper. Anal Chem 88(1):725–731

    Article  PubMed  Google Scholar 

  79. Fonollosa J, Vergara A, Huerta R, Marco S (2014) Estimation of the limit of detection using information theory measures. Anal Chim Acta 810:1–9

    Article  CAS  PubMed  Google Scholar 

  80. Currie LA (1999) Detection and quantification limits: origins and historical overview. Anal Chim Acta 391(2):127–134

    Article  CAS  Google Scholar 

  81. Chowdhury F, Williams A, Johnson P (2009) Validation and comparison of two multiplex technologies, Luminex and Mesoscale discovery, for human cytokine profiling. J Immunol Methods 340(1):55–64

    Article  CAS  PubMed  Google Scholar 

  82. Lash GE, Scaife PJ, Innes BA, et al. (2006) Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant. J Immunol Methods 309(1–2):205–208

    Article  CAS  PubMed  Google Scholar 

  83. Wyns H, Croubels S, Demeyere K, Watteyn A, De Backer P, Meyer E (2013) Development of a cytometric bead array screening tool for the simultaneous detection of pro-inflammatory cytokines in porcine plasma. Vet Immunol Immunopathol 151(1–2):28–36

    Article  CAS  PubMed  Google Scholar 

  84. Yang Z, Chen B, Pei X, Shangguan F (2012) Multiplex analysis of tumor multidrug-resistance genes expression with photonic suspension array. Analyst 137(14):3343–3348

    Article  CAS  PubMed  Google Scholar 

  85. Houser B (2012) Bio-Rad's Bio-Plex(R) suspension array system, xMAP technology overview. Arch Physiol Biochem 118(4):192–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park S, Lee HJ, Koh WG (2012) Multiplex immunoassay Platforms based on Shape-Coded poly(ethylene glycol) hydrogel microparticles Incorporating Acrylic acid. Sensors 12(6):8426–8436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peterson RD, Chen W, Cunningham BT, Andrade JE (2015) Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosens Bioelectron 74:815–822

    Article  CAS  PubMed  Google Scholar 

  88. Ye B, Ding H, Cheng Y, et al. (2014) Photonic crystal microcapsules for label-free multiplex detection. Advanced Materials (Deerfield Beach, Fla) 26(20):3270–3274

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of P.R. China (Grant NO. 81170492, 81370673), National High Technology Research and Development Program 863 of P.R. China (Grant NO. 2012AA022703), National Key Basic Research Program 973 of P.R. China (Grant NO. 2010CB732404), Key Medical Projects of Jiangsu Province (Grant NO. BL2014078), Key Discipline of Jiangsu Province (2011-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Chen.

Ethics declarations

Disclosure

The authors declare no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, C., Yang, Z. & Chen, B. Signal Improvement Strategies for Fluorescence Detection of Biomacromolecules. J Fluoresc 26, 1131–1139 (2016). https://doi.org/10.1007/s10895-016-1806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1806-3

Keywords

Navigation