Skip to main content

Advertisement

Log in

Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal R, Tyagi E, Vergnes L, Reue K, Gomez-Pinilla F (2013) Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim Biophys Acta 1842:535–546

    Article  Google Scholar 

  • Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, Oresic M, Tyynismaa H, Suomalainen A (2010) Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 19:1974–1984

    Article  CAS  Google Scholar 

  • Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151

    Article  CAS  Google Scholar 

  • Barbaresko J, Koch M, Schulze MB, Nothlings U (2013) Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev 71:511–527

    Article  Google Scholar 

  • Beattie DS, Basford RE, Koritz SB (1967) The turnover of the protein components of mitochondria from rat liver, kidney, and brain. J Biol Chem 242:4584–4586

    CAS  Google Scholar 

  • Bough KJ, Wetherington J, Hassel B et al (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235

    Article  CAS  Google Scholar 

  • Brinton RD (2008) The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci 31:529–537

    Article  CAS  Google Scholar 

  • Burns JM, Honea RA, Vidoni ED, Hutfles LJ, Brooks WM, Swerdlow RH (2012) Insulin is differentially related to cognitive decline and atrophy in Alzheimer’s disease and aging. Biochim Biophys Acta 1822:333–339

    Article  CAS  Google Scholar 

  • Chiang GG, Abraham RT (2005) Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 280:25485–25490

    Article  CAS  Google Scholar 

  • Colle E, Ulstrom RA (1964) Ketotic hypoglycemia. J Pediatr 64:632–651

    Article  CAS  Google Scholar 

  • Conlee RK, Hammer RL, Winder WW, Bracken ML, Nelson AG, Barnett DW (1990) Glycogen repletion and exercise endurance in rats adapted to a high fat diet. Metab Clin Exp 39:289–294

    Article  CAS  Google Scholar 

  • Davis LM, Rho JM, Sullivan PG (2008) UCP-mediated free fatty acid uncoupling of isolated cortical mitochondria from fasted animals: correlations to dietary modulations. Epilepsia 49(Suppl 8):117–119

    Article  Google Scholar 

  • Eagles DA, Chapman GB (2007) A light- and electron-microscope study of hepatocytes of rats fed different diets. C R Biol 330:62–70

    Article  CAS  Google Scholar 

  • Edmond J (2001) Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 16:181–193, discussion 215–121

    Article  CAS  Google Scholar 

  • Fuente-Martin E, Garcia-Caceres C, Morselli E, Clegg DJ, Chowen JA, Finan B, Brinton RD, Tschop MH (2013) Estrogen, astrocytes and the neuroendocrine control of metabolism. Rev Endocr Metab Disord 14:331–338

    Article  CAS  Google Scholar 

  • Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426

    Article  CAS  Google Scholar 

  • Gross NJ, Getz GS, Rabinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 244:1552–1562

    CAS  Google Scholar 

  • Guilford BL, Ryals JM, Wright DE (2011) Phenotypic changes in diabetic neuropathy induced by a high-fat diet in diabetic C57BL/6 mice. Exp Diabetes Res 2011:848307

    Article  CAS  Google Scholar 

  • Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9:261–265

    Article  CAS  Google Scholar 

  • Gustafson DR (2010) Adiposity hormones and dementia. J Neurol Sci 299:30–34

    Article  CAS  Google Scholar 

  • Harwood HJ Jr (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63:57–75

    Article  CAS  Google Scholar 

  • Heni M, Schopfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Haring HU, Maetzler W, Hennige AM (2013) Evidence for altered transport of insulin across the blood–brain barrier in insulin-resistant humans. Acta Diabetologica

  • Herzig S, Long F, Jhala US et al (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    Article  CAS  Google Scholar 

  • Hirai K, Aliev G, Nunomura A et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    CAS  Google Scholar 

  • Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–40416

    Article  CAS  Google Scholar 

  • Jamart C, Francaux M, Millet GY, Deldicque L, Frere D, Feasson L (2012) Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J Appl Physiol 112:1529–1537

    Article  CAS  Google Scholar 

  • Kennedy AR, Pissios P, Otu H et al (2007) A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 292:E1724–1739

    Article  CAS  Google Scholar 

  • Khan AA, Wilson JE (1965) Studies of turnover in mammalian subcellular particles: brain nuclei, mitochondria and microsomes. J Neurochem 12:81–86

    Article  CAS  Google Scholar 

  • Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278:30843–30848

    Article  CAS  Google Scholar 

  • Lopez-Armada MJ, Riveiro-Naveira RR, Vaamonde-Garcia C, Valcarcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13:106–118

    Article  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  Google Scholar 

  • McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    Article  Google Scholar 

  • McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  Google Scholar 

  • Menzies RA, Gold PH (1971) The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246:2425–2429

    CAS  Google Scholar 

  • Milder JB, Liang LP, Patel M (2010) Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis 40:238–244

    Article  CAS  Google Scholar 

  • Mitchell RW, Hatch GM (2011) Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot Essent Fat Acids 85:293–302

    Article  CAS  Google Scholar 

  • Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM (2011) Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117:735–746

    Article  CAS  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–686

    Article  CAS  Google Scholar 

  • Noh HS, Lee HP, Kim DW, Kang SS, Cho GJ, Rho JM, Choi WS (2004) A cDNA microarray analysis of gene expression profiles in rat hippocampus following a ketogenic diet. Brain Res Mol Brain Res 129:80–87

    Article  CAS  Google Scholar 

  • Pardridge WM, Mietus LJ (1980) Palmitate and cholesterol transport through the blood–brain barrier. J Neurochem 34:463–466

    Article  CAS  Google Scholar 

  • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, Spiegelman BM (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371

    Article  CAS  Google Scholar 

  • Rajwade MS, Katyare SS, Fatterpaker P, Sreenivasan A (1975) Regulation of mitochondrial protein turnover by thyroid hormone(s). Biochem J 152:379–387

    CAS  Google Scholar 

  • Reynolds THt, Bodine SC, Lawrence JC Jr (2002) Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277:17657–17662

    Article  CAS  Google Scholar 

  • Sandu O, Song K, Cai W, Zheng F, Uribarri J, Vlassara H (2005) Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 54:2314–2319

    Article  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  Google Scholar 

  • Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933

    Article  CAS  Google Scholar 

  • St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 278:26597–26603

    Article  CAS  Google Scholar 

  • Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167

    Article  CAS  Google Scholar 

  • Swerdlow RH (2009) The neurodegenerative mitochondriopathies. J Alzheimers Dis 17:737–751

    CAS  Google Scholar 

  • Swerdlow RH (2011) Role and treatment of mitochondrial DNA-related mitochondrial dysfunction in sporadic neurodegenerative diseases. Curr Pharm Des 17:3356–3373

    Article  CAS  Google Scholar 

  • Swerdlow RH (2012a) Does mitochondrial DNA play a role in Parkinson’s disease? A review of cybrid and other supportive evidence. Antioxid Redox Signal 16:950–964

    Article  CAS  Google Scholar 

  • Swerdlow RH (2012b) Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid Redox Signal 16:1434–1455

    Article  CAS  Google Scholar 

  • Swerdlow RH (2014) Bioenergetic medicine. Br J Pharmacol 171:1854–1869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the University of Kansas Alzheimer’s Disease Center (NIH P30 AG035982), the University of Kansas Physician Scientist Training Program, the Frank and Evangeline Thompson Alzheimer’s Treatment Program fund, the Hugh and Betty Libby Foundation, the Greater Kansas City Automobile Dealers Association, and the Gene and Marge Sweeney Chair.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell H. Swerdlow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selfridge, J.E., Wilkins, H.M., E, L. et al. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr 47, 1–11 (2015). https://doi.org/10.1007/s10863-014-9570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9570-z

Keywords

Navigation