Skip to main content
Log in

A novel strategy for NMR resonance assignment and protein structure determination

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution – especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atreya H, Sahu SC, Chary KV, Govil G (2000) A tracked approach for automated NMR assignments in proteins (TATAPRO). J Biomol NMR 17:125–136

    Article  Google Scholar 

  • Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5:1–12

    Article  Google Scholar 

  • Barna J, Laue ED (1987) Conventional and exponential sampling for 2D NMR experiments with application to a 2D NMR spectrum of a protein. J Magn Reson 75:387–389

    Google Scholar 

  • Bax A, Clore GM, Gronenborn AM (1990) 1H–1H correlation via isotropic mixing of 13C magnetization: a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson B 88:425–431

    Google Scholar 

  • Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures deterined by structural genomics consortia. Proteins 66:778–795

    Article  Google Scholar 

  • Billeter M, Wagner G, Wüthrich K (2008) Solution NMR structure determination of proteins revisited. J Biomol NMR 42:155–158

    Article  Google Scholar 

  • Brünger A, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  Google Scholar 

  • Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, Gehring K, Kennedy MA, Davidson AR, Pai EF, Gerstein M, Edwards AM, Arrowsmith CH (2000) Structural proteomics of an archaeon. Nat Struct Mol Biol 7:903–909

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Freeman R, Kupče E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113

    Article  Google Scholar 

  • Goddard T, and Kneller, DG Sparky 3. University of California, San Francisco

  • Grzesiek S, Bax A (1992a) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293

    Article  Google Scholar 

  • Grzesiek S, Bax A (1992b) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99:201–207

    Google Scholar 

  • Grzesiek S, Bax A (1992c) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson 96:432–440

    Google Scholar 

  • Grzesiek S, Bax A (1993) Amino-acid type determination in the sequential procedure of uniformly C-13/N-15-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    Google Scholar 

  • Gutmanas A, Jarvoll P, Orekhov VY, Billeter M (2002) Three-way decomposition of a complete 3D 15 N-NOESY-HSQC. J Biomol NMR 24:191–201

    Article  Google Scholar 

  • Helgstrand M, Kraulis P, Allard P, Härd T (2000) ANSIG for Windows: an interactive computer program for semiautomatic assignment of protein NMR spectra. J Biomol NMR 18:329–336

    Article  Google Scholar 

  • Huang Y, Powers R, Montelione GT (2005) Protein NMR recall, precision and F-measure scores (RPF scores): structure quality assessment measures based in information retrieval statistics. J Am Chem Soc 127:1665–1674

    Article  Google Scholar 

  • Huang Y, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603

    Article  Google Scholar 

  • Ikura M, Kay LE, Bax A (1990a) A novel approach for sequential assignment of 1H, 13C, and 15 N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667

    Article  Google Scholar 

  • Ikura M, Krinks M, Torchia DA, Bax A (1990b) An efficient NMR approach for obtaining sequence-specific resonance assignments of larger proteins based on multiple isotopic labeling. FEBS Lett 266:155–158

    Article  Google Scholar 

  • Ikura M, Marion D, Kay LE, Shih H, Krinks M, Klee CB, Bax A (1990c) Heteronuclear 3D NMR and isotopic labeling of calmodulin. Towards the complete assignment of the 1H NMR spectrum. Biochem Pharmacol 40:153–160

    Article  Google Scholar 

  • Ikura M, Kay LE, Bax A (1991a) Improved three-dimensional 1H–13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J Biomol NMR 1:299–304

    Article  Google Scholar 

  • Ikura M, Kay LE, Krinks M, Bax A (1991b) Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. Biochemistry 30:5498–5504

    Article  Google Scholar 

  • Ikura M, Spera S, Barbato G, Kay LE, Krinks M, Bax A (1991c) Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry 30:9216–9228

    Article  Google Scholar 

  • Kay L, Clore GM, Bax A, Gronenborn AM (1990a) Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. Science 249:411–414

    Article  ADS  Google Scholar 

  • Kay L, Ikura M, Tschudin R, Bax A (1990b) Three-dimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kobayahi N, Iwahara J, Koshiba S, Tomizawa T, Tochio N, Guntert P, Kigawa T, Yokoyama S (2007) KUJIRA, a package of integrated modules for systemic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J Biomol NMR 39:31–52

    Article  Google Scholar 

  • Lee W, Westler WM, Bahrami A, Eghbalnia HR, Markley JL (2009) PINE-SPARKY: graphical interface for evaluating automated probabilistic peak assignments in protein NMR spectroscopy. Bioinformatics 25:2085–2087

    Article  Google Scholar 

  • Lemak A, Steren CA, Arrowsmith CH, Llinas M (2008) Sequence specific resonance assignment via multicanonical Monte Carlo search using an ABACUS approach. J Biomol NMR 41(1):29–41

    Article  Google Scholar 

  • Linge J, Habeck M, Rieping W, Nilges M (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19:315–316

    Article  Google Scholar 

  • Logan T, Olejniczak ET, Zi RX, Fesik SW (1992) Side chain and backbone assignments in isotropically labeled proteins from two heteronuclear triple resonance experiments. FEBS Lett 314:413–418

    Article  Google Scholar 

  • Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14

    Article  Google Scholar 

  • Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM (1989a) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H–15 N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28:6150–6156

    Article  Google Scholar 

  • Marion D, Kay LE, Sparks SW, Torchia DA, Bax A (1989b) Three-dimensional heteronuclear NMR of nitrogen-15 labeled proteins. J Am Chem Soc 111:1514–1515

    Article  Google Scholar 

  • Montelione G, Zheng D, Huang YJ, Gunsalus KC, Szyperski T (2000) Protein NMR spectroscopy in structural genomics. Nat Struct Mol Biol 7:982–985

    Article  Google Scholar 

  • Muhandiram D, Kay LE (1994) Graident-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson B 103

  • Orekhov V, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  Google Scholar 

  • Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382

    Article  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009a) TALOS + : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Shen Y, Vernon R, Baker D, Bax A (2009b) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78

    Article  Google Scholar 

  • Slupsky C, Boyko RF, Booth VK, Sykes BD (2003) Smartnotebook: a semi-automated approach to protein sequential NMR resonance assignments. J Biomol NMR 27:313–321

    Article  Google Scholar 

  • Snyder D, Chen Y, Denissova NG, Acton T, Aramini JM, Ciano M, Karlin R, Liu J, Manor P, Rajan PA, Rossi P, Swapna GV, Xiao R, Rost B, Hunt J, Montelione GT (2005) Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J Am Chem Soc 127:16505–16511

    Article  Google Scholar 

  • Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar 1H–15 N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Mol Biol 4:732–738

    Article  Google Scholar 

  • Ulrich E, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte DF, Tolmie DE, KentWenger R, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  Google Scholar 

  • Valafar H, Mayer KL, Bougault CM, LeBlond PD, Jenney FE Jr, Bereton PS, Adams MW, Prestegard JH (2004) Backbone solution structures of proteins using residual dipolar couplings: application to a novel structural genomics target. J Struct Funct Genomics 5:241–254

    Article  Google Scholar 

  • Vuister G, Bax A (1992) Resolution enhancement and spectral editing of uniformly 13C-enriched proteins by homonuclear broadband 13C decoupling. J Magn Reson 98:428–435

    Google Scholar 

  • Wong L, Masse JE, Jaravine V, Orekhov V, Pervushin K (2008) Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data. J Biomol NMR 42:77–86

    Article  Google Scholar 

  • Wu B, Skarian T, Yee A, Jobin MC, Dileo R, Semesi A, Fares C, Lemak A, Coombes BK, Arrowsmith CH, Singer AU, Savchenko A (2010) NleG type 3 effectors from enteroharmorrhagic Escherichia coli are U-box E3 ubiquitin ligases. PLoS Pathog 6

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Willey, New York

    Google Scholar 

  • Yee A, Chang X, Pineda-Lucena A, Wu B, Semesi A, Le B, Ramelot T, Lee GM, Bhattacharyya S, Gutierrez P, Denisov A, Lee CH, Cort JR, Kozlov G, Liao J, Finak G, Chen L, Wishart D, Lee W, McIntosh LP, Gehring K, Kennedy MA, Edwards AM, Arrowsmith CH (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci USA 99(4):1825–1830

    Article  ADS  Google Scholar 

  • Yee A, Savchenko A, Ignachenko A, Lukin J, Xu X, Skarina T, Evdokimova E, Liu CS, Semesi A, Guido V, Edwards AM, Arrowsmith CH (2005) NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J Am Chem Soc 127:16512–16517

    Article  Google Scholar 

  • Zheng D, Huang YJ, Moseley HN, Xiao R, Aramini J, Swapna GV, Montelione GT (2003) Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci 12:1232–1246

    Article  Google Scholar 

  • Zimmerman D, Kulikowski CA, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  Google Scholar 

  • Zuiderweg E (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41:1–7

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Doung-uen (Kevin) Lee for help in the initial design of FMCGUI, members of the Arrowsmith Lab for their input, and Dr. Binchen Mao for assistance in running PSVS analysis. This work was supported by the US National Institute of Health Protein Structure Initiative (P50-GM62413-01 and GM67965) through the Northeast Structural Genomics Consortium; the Natural Sciences and Engineering Research Council of Canada; the Canadian Institutes of Health Research (CIHR), and the Ontario Ministry of Health and Long Term Care (OMOHLTC). The views expressed do not necessarily reflect those of the OMOHLTC. SC is the recipient of a CIHR post-doctoral fellowship and CHA holds a Canada Research Chair in Structural Proteomics. MS holds a Vinnmer fellowship from VINNOVA (The Swedish Governmental Agency for Innovation Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl H. Arrowsmith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemak, A., Gutmanas, A., Chitayat, S. et al. A novel strategy for NMR resonance assignment and protein structure determination. J Biomol NMR 49, 27–38 (2011). https://doi.org/10.1007/s10858-010-9458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9458-0

Keywords

Navigation