Skip to main content
Log in

The effect of temperature and humidity on electrospinning

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospinning is a process that generates nanofibres. Temperature and humidity affect this process. In this article the influence of humidity and temperature on the formation and the properties of nanofibres are studied using cellulose acetate (CA) and poly(vinylpyrrolidone) (PVP) as target materials. The experiments indicate that two major parameters are dependent of temperature and have their influence on the average fibre diameter. A first parameter is the solvent evaporation rate that increases with increasing temperature. The second parameter is the viscosity of the polymer solution that decreases with increasing temperature. The trend in variation of the average nanofibre diameter as a function of humidity is different for CA and PVP, which can be explained by variations in chemical and molecular interaction and its influence on the solvent evaporation rate. As the humidity increases, the average fibre diameter of the CA nanofibres increases, whilst for PVP the average diameter decreases. The average diameter of nanofibres made by electrospinning change significantly through variation of temperature and humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1,975,504

  2. Miqin Z (2007) Alginate-based nanofibers and related scaffolds. US Patent WO2007112446

  3. De Vrieze S et al (2007) J Mater Sci 42:8029. doi:https://doi.org/10.1007/s10853-006-1485-6

    Article  CAS  Google Scholar 

  4. Frenot A et al (2007) J Appl Polym Sci 103:1473

    Article  CAS  Google Scholar 

  5. Gibson PW et al (1999) AICHE J 45:190

    Article  CAS  Google Scholar 

  6. Aussawasathien D, Dong JH, Dai L (2005) Synth Met 154:37. doi:https://doi.org/10.1016/j.synthmet.2005.07.018

    Article  CAS  Google Scholar 

  7. Jin WJ et al (2007) Synth Met 157:454

    Article  CAS  Google Scholar 

  8. Yang Y et al (2006) IEEE Trans Dielectr Electr Insul 13:580

    Article  CAS  Google Scholar 

  9. Tripatanasuwan S, Zhong Z, Reneker D (2007) Polymer (Guildf) 48:5742. doi:https://doi.org/10.1016/j.polymer.2007.07.045

    Article  CAS  Google Scholar 

  10. Givens SR et al (2007) Macromolecules 40:608

    Article  CAS  Google Scholar 

  11. Wang C et al (2007) Macromolecules 40:7973

    Article  CAS  Google Scholar 

  12. Thompson CJ et al (2007) Polymer 48:6913

    Article  CAS  Google Scholar 

  13. Yang QB et al (2004) J Polym Sci Part B-Polym Phys 42:3721

    Article  CAS  Google Scholar 

  14. Tungprapa S et al (2007) Cellulose 14:563

    Article  CAS  Google Scholar 

  15. Lin K et al (2007) Polymer 48:6384

    Article  CAS  Google Scholar 

  16. Greenspan L (1977) J Res Natl Bur Stand 81A:89

    Article  Google Scholar 

  17. Casper L et al (2004) Macromolecules 37:573

    Article  CAS  Google Scholar 

  18. Dalton J (1802) Mem Lit Philos Soc 5:535

    Google Scholar 

  19. CRC Handbook of Chemistry and Physics, 44th edn, pp 2582–2584

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. De Vrieze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vrieze, S., Van Camp, T., Nelvig, A. et al. The effect of temperature and humidity on electrospinning. J Mater Sci 44, 1357–1362 (2009). https://doi.org/10.1007/s10853-008-3010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3010-6

Keywords

Navigation