Skip to main content
Log in

Betaine Protects Against High-Fat-Diet-Induced Liver Injury by Inhibition of High-Mobility Group Box 1 and Toll-Like Receptor 4 Expression in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Objectives

Previous studies have shown that betaine prevents alcohol-induced liver injury and improves liver function. The purpose of this study was to investigate the hepatoprotective effects of betaine on nonalcoholic fatty liver disease (NAFLD) and to observe changes of HMGB1/TLR4 signaling.

Methods

Thirty rats were randomly divided into control, model, and betaine groups. The rats in the model and betaine groups were fed a high-fat diet for 12 weeks to induce an animal model of NAFLD. The rats in the betaine group were then intragastrically administered betaine solution at a dose of 400 mg/kg per day for four weeks. Liver histology was examined. Serum levels of ALT, AST, TC, TG, HDL-C, LDL-C, FFA, HMGB1, NF-κB, TLR4, and tHcy were determined and intrahepatic TC, TG, and Hcy levels were assayed. mRNA expression and protein levels of HMGB1, NF-κB, and TLR4 in liver tissue were also determined.

Results

Compared with the control group, rats in the model group developed severe liver injury, accompanied by significant increases in serum levels of ALT, AST, TC, TG, LDL-C, FFA, HMGB1, NF-κB, and TLR4, intrahepatic TC, TG, and Hcy content, histological scores for steatosis, inflammation, and necrosis, and mRNA expression and protein levels of HMGB1, NF-κB, and TLR4, and a significant decrease in serum HDL-C (P < 0.05). Compared with the model group, all these indicators were significantly improved by administration of betaine (P < 0.05).

Conclusions

Betaine effectively protects against high-fat-diet-induced NAFLD and improves liver function; the mechanism is probably related to inhibition of HMGB1/TLR4 signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

ALT:

Serum alanine transaminase

AST:

Aspartate transaminase

TC:

Total cholesterol

TG:

Triglyceride

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

FFA:

Free fatty acid

HMGB1:

High-mobility group box 1

NF-κB:

Nuclear factor-κB

TLR4:

Toll-like receptor 4

tHcy:

Total homocysteine

Hcy:

Homocysteine

RT-PCR:

Reverse transcriptase polymerase chain reaction

WG:

Weight gain

LI:

Liver index

LPS:

Lipopolysaccharide

References

  1. Day CP, James OF. Steatohepatitis: a tale of two ‘‘hits’’? Gastroenterology. 1998;114:842–845.

    Article  PubMed  CAS  Google Scholar 

  2. Day CP. From fat to inflammation. Gastroenterology. 2006;130:207–210.

    Article  PubMed  CAS  Google Scholar 

  3. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol. 2004;4:499–511.

    Article  PubMed  CAS  Google Scholar 

  4. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279:7370–7377.

    Article  PubMed  CAS  Google Scholar 

  5. Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704–720.

    Article  PubMed  CAS  Google Scholar 

  6. Li L, Chen L, Hu L, et al. Nuclear factor high-mobility group box1 mediating the activation of Toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology. 2011;54:1620–1630.

    Article  PubMed  CAS  Google Scholar 

  7. Kim YC, Jung YS, Kim SK. Effect of betaine supplementation on changes in hepatic metabolism of sulfur-containing amino acids and experimental cholestasis induced by alpha-naphthylisothiocyanate. Food Chem Toxicol. 2005;43:663–670.

    Article  PubMed  CAS  Google Scholar 

  8. Craig SA. Betaine in human nutrition. Am J Clin Nutr. 2004;80:539–549.

    PubMed  CAS  Google Scholar 

  9. Shi QZ, Wang LW, Zhang W, Gong ZJ. Betaine inhibits toll-like receptor 4 expression in rats with ethanol-induced liver injury. World J Gastroenterol. 2010;16:897–903.

    PubMed  CAS  Google Scholar 

  10. Ji C, Shinohara M, Vance D, et al. Effect of transgenic extrahepatic expression of betaine-homocysteine methyltransferase on alcohol or homocysteine- induced fatty liver. Alcohol Clin Exp Res. 2008;32:1049–1058.

    Article  PubMed  CAS  Google Scholar 

  11. Kharbanda KK, Mailliard ME, Baldwin CR, Sorrell MF, Tuma DJ. Accumulation of proteins bearing atypical isoaspartyl residues in livers of alcohol-fed rats is prevented by betaine administration: effects on protein-L-isoaspartyl methyltransferase activity. J Hepatol. 2007;46:1119–1125.

    Article  PubMed  CAS  Google Scholar 

  12. Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology.. 2003;124:1488–1499.

    Article  PubMed  CAS  Google Scholar 

  13. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.

    Article  PubMed  Google Scholar 

  14. Mourvaki E, Ferrante F, Ghirarduzzi A, Brini M, Depunzio I, Iorio A. Performance comparison of three assay methods used in fasting and postmethionine load plasma homocysteine determinations from patients with vascular disease. Am J Clin Pathol. 2005;124:675–681.

    Article  PubMed  CAS  Google Scholar 

  15. Rajas F, Bruni N, Montano S, Zitoun C, Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology. 1999;117:132–139.

    Article  PubMed  CAS  Google Scholar 

  16. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.

    Article  PubMed  CAS  Google Scholar 

  17. Parrish CC, Bodennec G, Gentien P. Separation of polyunsaturated and saturated lipids from marine phytoplankton on silica gel-coated chromarods. Journal of Chromatography A. 1992;607:97–104.

    Article  CAS  Google Scholar 

  18. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000;275:29318–29323.

    Article  PubMed  CAS  Google Scholar 

  19. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–195.

    Article  PubMed  CAS  Google Scholar 

  20. Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol. 1999;19:5237–5246.

    PubMed  CAS  Google Scholar 

  21. Lamkanfi M, Sarkar A. Vande Walle L, Vitari AC, Amer AO, Wewers MD, et al. Inflammasomedependent release of the alarmin HMGB1 in endotoxemia. J Immunol. 2010;185:4385–4392.

    Article  PubMed  CAS  Google Scholar 

  22. van Zoelen MA, Yang H, Florquin S, et al. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock. 2009;31:280–284.

    Article  PubMed  Google Scholar 

  23. Park JS, Gamboni-Robertson F, He Q, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol. 2006;290:C917–C924.

    Article  PubMed  CAS  Google Scholar 

  24. Dela Pena A, Leclercq I, Field J, et al. NFkappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology. 2005;129:1663–1674.

    Article  PubMed  CAS  Google Scholar 

  25. Arkan MC, Hevener AL, Greten FR, et al. IKK-blinks inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–198.

    Article  PubMed  CAS  Google Scholar 

  26. Valenti L, Fracanzani AL, Fargion S. The immunopathogenesis of alcoholic and nonalcoholic steatohepatitis: two triggers for one disease? Semin Immunopathol. 2009;31:359–369.

    Article  PubMed  CAS  Google Scholar 

  27. Miura K, Seki E, Ohnishi H, Brenner DA. Role of toll-like receptors and their downstream molecules in the development of nonalcoholic Fatty liver disease. Gastroenterol Res Pract. 2010;2010:362847.

    PubMed  Google Scholar 

  28. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–3025.

    Article  PubMed  CAS  Google Scholar 

  29. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007;56:1986–1998.

    Article  PubMed  CAS  Google Scholar 

  30. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.

    Article  PubMed  CAS  Google Scholar 

  31. de Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proceedings of the Nutrition Society. 2012;1:1–7.

    Google Scholar 

  32. Abdelmalek MF, Angulo P, Jorgensen RA, Sylvestre PB, Lindor KD. Betaine, a promising new agent for patients with nonalcoholic steatohepatitis: results of a pilot study. Am J Gastroenterol. 2001;96:2711–2717.

    Article  PubMed  CAS  Google Scholar 

  33. Miglio F, Rovati LC, Santoro A, Setnikar I. Efficacy and safety of oral betaine glucuronate in non-alcoholic steatohepatitis. A double-blind, randomized, parallel-group, placebo-controlled prospective clinical study. Arzneimittelforschung. 2000;50:722–727.

    PubMed  CAS  Google Scholar 

  34. Abdelmalek MF, Sanderson SO, Angulo P, et al. Betaine for nonalcoholic fatty liver disease: results of a randomized placebo-controlled trial. Hepatology. 2009;50:1818–1826.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Natural Science Foundation of Hubei province (no. 2011CDB494).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-jiong Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Wang, Lw., Wang, Lk. et al. Betaine Protects Against High-Fat-Diet-Induced Liver Injury by Inhibition of High-Mobility Group Box 1 and Toll-Like Receptor 4 Expression in Rats. Dig Dis Sci 58, 3198–3206 (2013). https://doi.org/10.1007/s10620-013-2775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2775-x

Keywords

Navigation