Skip to main content
Log in

Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of ε-caprolactone

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, surface-initiated ring-opening polymerization has been employed for the grafting of ε-caprolactone from cellulose nanoparticles, made by partial hydrolysis of cellulose cotton linters. A sacrificial initiator was employed during the grafting reactions, to form free polymer in parallel to the grafting reaction. The degree of polymerization of the polymer grafts, and of the free polymer, was varied by varying the reaction time. The aim of this study was to estimate the cellulose nanoparticle degree of surface substitution at different reaction times. This was accomplished by combining measurement results from spectroscopy and chromatography. The prepared cellulose nanoparticles were shown to have 3.1 (±0.3) % of the total anhydroglucose unit content present at the cellulose nanoparticle surfaces. This effectively limits the amount of cellulose that can be targeted by the SI-ROP reactions. For a certain SI-ROP reaction time, it was assumed that the resulting degree of polymerization (DP) of the grafts and the DP of the free polymer were equal. Based on this assumption it was shown that the cellulose nanoparticle surface degree of substitution remained approximately constant (3–7 %) and seemingly independent of SI-ROP reaction time. We believe this work to be an important step towards a deeper understanding of the processes and properties controlling SI-ROP reactions occurring at cellulose surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FRP:

Free radical polymerization

RDRP:

Reversible-deactivation radical polymerization

Ð M :

Molar-mass dispersity

ATRP:

Atom transfer radical polymerization

RAFT:

Reversible addition-fragmentation chain-transfer

NMP:

Nitroxide-mediated polymerization

ROP:

Ring-opening polymerization

SI-ROP:

Surface-initiated ring-opening polymerization

AGU:

Anhydroglucose unit

CNF:

Cellulose nanofibrils

CNC:

Cellulose nanocrystals

Sn(Oct)2 :

Tin 2-ethylhexanoate

PCL:

Poly(ε-caprolactone)

ε-CL:

ε-Caprolactone

CCL:

Cellulose cotton linters

HCCL:

Hydrolyzed cellulose cotton linters

CP/MAS:

Cross-polarization/magic angle spinning

DSBM :

Bulk monomer degree of substitution

PCL-g-HCCL:

PCL-grafted HCCL

DP:

Degree of polymerization

SEC:

Size exclusion chromatography

DSSP :

Degree of polymer/cellulose nanoparticle surface substitution

NaClO4 :

Sodium perchlorate

BnOH:

Benzyl alcohol

THF:

Tetrahydrofuran

MeOH:

Methanol

References

  • Biela T, Duda A, Penczek S (2002) Control of Mn, Mw/Mn, end-groups, and kinetics in living polymerization of cyclic esters. Macromol Symp 183(1):1–10. doi:10.1002/1521-3900(200207)183:1<1::aid-masy1>3.0.co;2-q

    Article  CAS  Google Scholar 

  • Boujemaoui A, Carlsson L, Malmström E, Lahcini M, Berglund L, Sehaqui H, Carlmark A (2012) Facile preparation route for nanostructured composites: surface-Initiated ring-opening polymerization of ε-caprolactone from high-surface-area nanopaper. ACS Appl Mater Interfaces 4(6):3191–3198. doi:10.1021/am300537h

    Article  CAS  Google Scholar 

  • Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146. doi:10.1016/j.progpolymsci.2006.11.002

    Article  CAS  Google Scholar 

  • Carlmark A (2013) Tailoring cellulose surfaces by controlled polymerization methods. Macromol Chem Phys 214(14):1539–1544. doi:10.1002/macp.201300272

    Article  CAS  Google Scholar 

  • Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124(6):900–901. doi:10.1021/ja016582h

    Article  CAS  Google Scholar 

  • Carlmark A, Larsson E, Malmström E (2012) Grafting of cellulose by ring-opening polymerisation—a review. Eur Polym J 48(10):1646–1659. doi:10.1016/j.eurpolymj.2012.06.013

    Article  CAS  Google Scholar 

  • Carlsson L, Utsel S, Wågberg L, Malmström E, Carlmark A (2012) Surface-initiated ring-opening polymerization from cellulose model surfaces monitored by a Quartz Crystal Microbalance. Soft Matter 8(2):512–517. doi:10.1039/c1sm06121f

  • Carothers WH, Dorough GL, van Natta FJ (1932) Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc 54(2):761–772. doi:10.1021/ja01341a046

    Article  CAS  Google Scholar 

  • Chunilall V, Bush T, Larsson PT, Iversen T, Kindness A (2010) A CP/MAS 13C-NMR study of cellulose fibril aggregation in eucalyptus dissolving pulps during drying and the correlation between aggregate dimensions and chemical reactivity. Holzforschung 64(6):693–698. doi:10.1515/hf.2010.097

  • Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174(1):155–164. doi:10.1002/1521-3900(200109)174:1<155::aid-masy155>3.0.co;2-o

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • Geacintov N, Stannett VT, Abrahamson EW, Hermans JJ (1959) Grafting onto cellulose and cellulose derivatives by using ultraviolet irradiation. In: Proceedings of Cellulose Conference, 2nd, Syracuse, pp 142–159

  • Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52(7):1532–1538. doi:10.1016/j.polymer.2011.02.004

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010. doi:10.1039/b809212e

    Article  CAS  Google Scholar 

  • Hafrén J, Córdova A (2005) Direct organocatalytic polymerization from cellulose fibers. Macromol Rapid Commun 26(2):82–86. doi:10.1002/marc.200400470

    Article  Google Scholar 

  • Husemann M, Mecerreyes D, Hawker CJ, Hedrick JL, Shah R, Abbott NL (1999) Surface-initiated polymerization for amplification of self-assembled monolayers patterned by microcontact printing. Angew Chem Int Ed 38:647–649. doi:10.1002/(sici)1521-3773(19990301)38:5<647::aid-anie647>3.0.co;2-0

    Article  CAS  Google Scholar 

  • Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81(2):226–233. doi:10.1016/j.carbpol.2010.02.023

    Article  Google Scholar 

  • Kowalski A, Duda A, Penczek S (2000) Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI−TOF spectra. Macromolecules 33(3):689–695. doi:10.1021/ma9906940

    Article  CAS  Google Scholar 

  • Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504. doi:10.1039/b820162p

    Article  CAS  Google Scholar 

  • Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of—caprolactone as a case study. Cellulose 18(3):607–617. doi:10.1007/s10570-011-9527-x

    Article  CAS  Google Scholar 

  • Labet M, Thielemans W (2012) Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym Chem 3(3):679–684. doi:10.1039/c2py00493c

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydrate Research 302 (1–2):19–25. doi:10.1016/S0008-6215(97)00130-4

  • Larsson PT, Hult E-L, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40. doi:10.1016/S0926-2040(99)00044-2

    Article  CAS  Google Scholar 

  • Larsson PT, Svensson A, Wågberg L (2013) A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls. Cellulose 20(2):623–631. doi:10.1007/s10570-012-9850-x

    Article  CAS  Google Scholar 

  • Li K, Song J, Xu M, Kuga S, Zhang L, Cai J (2014) Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites. ACS Appl Mater Interfaces. doi:10.1021/am500337p

    Google Scholar 

  • Lönnberg H, Zhou Q, Brumer H, Teeri TT, Malmström E, Hult A (2006) Grafting of cellulose fibers with poly(ε-caprolactone) and poly(l-lactic acid) via ring-opening polymerization. Biomacromolecules 7(7):2178–2185. doi:10.1021/bm060178z

    Article  Google Scholar 

  • Lönnberg H, Fogelström L, Berglund L, Malmström E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(ε-caprolactone)—synthesis and characterization. Eur Polym J 44(9):2991–2997. doi:10.1016/j.eurpolymj.2008.06.023

    Article  Google Scholar 

  • Lönnberg H, Fogelström L, Zhou Q, Hult A, Berglund L, Malmström E (2011a) Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(ε-caprolactone) bilayer laminate. Compos Sci Technol 71(1):9–12. doi:10.1016/j.compscitech.2010.09.007

    Article  Google Scholar 

  • Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011b) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites–influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433. doi:10.1021/am2001828

    Article  Google Scholar 

  • Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3(7):1702–1713. doi:10.1039/c1py00445j

    Article  Google Scholar 

  • Mino G, Kaizerman S (1958) A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J Polym Sci 31(122):242–243. doi:10.1002/pol.1958.1203112248

    Article  Google Scholar 

  • Nordgren N, Lönnberg H, Hult A, Malmström E, Rutland MW (2009) Adhesion dynamics for cellulose nanocomposites. ACS Appl Mater Interfaces 1:2098–2103. doi:10.1021/am900381t

    Article  CAS  Google Scholar 

  • Nordgren N, Carlsson L, Blomberg H, Carlmark A, Malmström E, Rutland MW (2013) Nanobiocomposite adhesion: role of graft length and temperature in a hybrid biomimetic approach. Biomacromolecules 14:1003–1009. doi:10.1021/bm301790b

    Article  CAS  Google Scholar 

  • Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58(3):792–801. doi:10.1016/j.actamat.2009.09.057

    Article  CAS  Google Scholar 

  • Peydecastaing J, Vaca-Garcia C, Borredon E (2009) Accurate determination of the degree of substitution of long chain cellulose esters. Cellulose 16(2):289–297. doi:10.1007/s10570-008-9267-8

    Article  CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition−fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372. doi:10.1021/ma0515026

    Article  CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2008) Synthesis of natural-synthetic hybrid materials from cellulose via the RAFT process. Soft Matter 4(1):145–155. doi:10.1039/b711248n

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064. doi:10.1039/b808639g

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660. doi:10.1002/pol.1962.1205716551

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi:10.1021/bm801193d

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26(1):402–411. doi:10.1021/la9028595

    Article  CAS  Google Scholar 

  • Vigo TL (1998) Interaction of cellulose with other polymers: retrospective and prospective. Polym Adv Technol 9(9):539–548. doi:10.1002/(sici)1099-1581(199809)9:9<539::aid-pat813>3.0.co;2-i

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312(3):123–129. doi:10.1016/S0008-6215(98)00236-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Wallenberg Wood Science Center (WWSC), the Swedish Research Council (VR) and  the Swedish Research Council Formas are acknowledged for financial support. Dr. Xuewei Zhang, LCPP C2P2, CPE, Lyon, France is greatly acknowledged for support with SEC analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Per Tomas Larsson or Eva Malmström.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlsson, L., Ingverud, T., Blomberg, H. et al. Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of ε-caprolactone. Cellulose 22, 1063–1074 (2015). https://doi.org/10.1007/s10570-014-0510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0510-1

Keywords

Navigation