Skip to main content

Advertisement

Log in

Estrogen-related genes and their contribution to racial differences in breast cancer risk

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Racial differences in breast cancer risk, including the risks of hormone receptor subtypes of breast cancer, have been previously reported. We evaluated whether variation in genes related to estrogen metabolism (COMT, CYP1A1, CYP1B1, CYP17A1, CYP19A1, ESR1, GSTM1, GSTP1, GSTT1, HSD17B1, SULT1A1, and UGT1A1) contributes to breast cancer risk and/or racial differences in risk within the CARE study, a multi-centered, population-based case–control study of breast cancer. Genetic variation was assessed as single nucleotide polymorphisms (SNPs), haplotypes, and SNP–hormone therapy (HT) interactions within a subset of 1,644 cases and 1,451 controls, including 949 Black women (493 cases and 456 controls), sampled from the CARE study population. No appreciable associations with breast cancer risk were detected for single SNPs or haplotypes in women overall. We detected SNP–HT interactions in women overall within CYP1B1 (rs1800440; p het = 0.003) and within CYP17A1 (rs743572; p het = 0.009) in which never users of HT were at a decreased risk of breast cancer, while ever users were at a non-significant increased risk. When investigated among racial groups, we detected evidence of an SNP–HT interaction with CYP1B1 in White women (p value = 0.02) and with CYP17A1 in Black women (p value = 0.04). This analysis suggests that HT use may modify the effect of variation in estrogen-related genes on breast cancer risk, which may affect Black and White women to a different extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amend K, Hicks D, Ambrosone CB (2006) Breast cancer in African-American women: differences in tumor biology from European-American women. Cancer Res 66:8327–8330

    Article  PubMed  CAS  Google Scholar 

  2. Morris GJ, Mitchell EP (2008) Higher incidence of aggressive breast cancers in African-American women: a review. J Natl Med Assoc 100:698–702

    PubMed  Google Scholar 

  3. Li CI, Malone KE, Daling JR (2002) Differences in breast cancer hormone receptor status and histology by race and ethnicity among women 50 years of age and older. Cancer Epidemiol Biomarkers Prev 11:601–607

    PubMed  Google Scholar 

  4. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  5. Jones BA, Kasl SV, Howe CL et al (2004) African-American/White differences in breast carcinoma: p53 alterations and other tumor characteristics. Cancer 101:1293–1301

    Article  PubMed  Google Scholar 

  6. Joe AK, Hibshoosh H (2005) African-American/White differences in breast carcinoma. Cancer 104:661–662

    Article  PubMed  Google Scholar 

  7. Simon MS, Korczak JF, Yee CL et al (2006) Breast cancer risk estimates for relatives of white and African American women with breast cancer in the Women’s Contraceptive and Reproductive Experiences Study. J Clin Oncol 24:2498–2504

    Article  PubMed  Google Scholar 

  8. Chlebowski RT, Chen Z, Anderson GL et al (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97:439–448

    Article  PubMed  Google Scholar 

  9. Huo D, Ikpatt F, Khramtsov A et al (2009) Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J Clin Oncol 27:4515–4521

    Article  PubMed  CAS  Google Scholar 

  10. Gapstur SM, Morrow M, Sellers TA (1999) Hormone replacement therapy and risk of breast cancer with a favorable histology: results of the Iowa Women’s Health Study. JAMA 281:2091–2097

    Article  PubMed  CAS  Google Scholar 

  11. Millikan RC, Newman B, Tse CK et al. (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139

    Google Scholar 

  12. Hall P, Ploner A, Bjohle J et al (2006) Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study. BMC Med 4:16

    PubMed  Google Scholar 

  13. Biglia N, Sgro L, Defabiani E et al (2005) The influence of hormone replacement therapy on the pathology of breast cancer. Eur J Surg Oncol 31:467–472

    Article  PubMed  CAS  Google Scholar 

  14. Phipps AI, Chlebowski RT, Prentice R et al (2011) Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer. J Natl Cancer Inst 103:470–477

    Article  PubMed  Google Scholar 

  15. Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Reproductive and hormonal risk factors for postmenopausal luminal, HER-2-overexpressing, and triple-negative breast cancer. Cancer 113:1521–1526

    Article  PubMed  Google Scholar 

  16. Brett KM, Madans JH (1997) Use of postmenopausal hormone replacement therapy: estimates from a nationally representative cohort study. Am J Epidemiol 145:536–545

    Article  PubMed  CAS  Google Scholar 

  17. Setiawan VW, Haiman CA, Stanczyk FZ, Le ML, Henderson BE (2006) Racial/ethnic differences in postmenopausal endogenous hormones: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 15:1849–1855

    Article  PubMed  CAS  Google Scholar 

  18. Pinheiro SP, Holmes MD, Pollak MN, Barbieri RL, Hankinson SE (2005) Racial differences in premenopausal endogenous hormones. Cancer Epidemiol Biomarkers Prev 14:2147–2153

    Article  PubMed  CAS  Google Scholar 

  19. Haiman CA, Pike MC, Bernstein L et al (2002) Ethnic differences in ovulatory function in nulliparous women. Br J Cancer 86:367–371

    Article  PubMed  CAS  Google Scholar 

  20. Randolph JF Jr, Sowers M, Bondarenko IV, Harlow SD, Luborsky JL, Little RJ (2004) Change in estradiol and follicle-stimulating hormone across the early menopausal transition: effects of ethnicity and age. J Clin Endocrinol Metab 89:1555–1561

    Article  PubMed  CAS  Google Scholar 

  21. Sowers MR, Jannausch ML, McConnell DS, Kardia SR, Randolph JF Jr (2006) Endogenous estradiol and its association with estrogen receptor gene polymorphisms. Am J Med 119:S16–S22

    Article  PubMed  CAS  Google Scholar 

  22. Beckmann L, Husing A, Setiawan VW et al (2011) Comprehensive analysis of hormone and genetic variation in 36 genes related to steroid hormone metabolism in pre- and postmenopausal women from the breast and prostate cancer cohort consortium (BPC3). J Clin Endocrinol Metab 96:E360–E367

    Article  PubMed  CAS  Google Scholar 

  23. Friedenreich CM (2001) Review of anthropometric factors and breast cancer risk. Eur J Cancer Prev 10:15–32

    Article  PubMed  CAS  Google Scholar 

  24. Kato I, Cichon M, Yee CL, Land S, Korczak JF (2009) African American-preponderant single nucleotide polymorphisms (SNPs) and risk of breast cancer. Cancer Epidemiol 33:24–30

    Article  PubMed  CAS  Google Scholar 

  25. Rebbeck TR, Troxel AB, Walker AH et al (2007) Pairwise combinations of estrogen metabolism genotypes in postmenopausal breast cancer etiology. Cancer Epidemiol Biomarkers Prev 16:444–450

    Article  PubMed  CAS  Google Scholar 

  26. Taioli E, Trachman J, Chen X, Toniolo P, Garte SJ (1995) A CYP1A1 restriction fragment length polymorphism is associated with breast cancer in African-American women. Cancer Res 55:3757–3758

    PubMed  CAS  Google Scholar 

  27. Van Emburgh BO, Hu JJ, Levine EA et al (2008) Polymorphisms in CYP1B1, GSTM1, GSTT1 and GSTP1, and susceptibility to breast cancer. Oncol Rep 19:1311–1321

    PubMed  Google Scholar 

  28. Bryc K, Auton A, Nelson MR et al (2010) Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci U S A 107:786–791

    Article  PubMed  CAS  Google Scholar 

  29. Fejerman L, Haiman CA, Reich D et al (2009) An admixture scan in 1,484 African American women with breast cancer. Cancer Epidemiol Biomarkers Prev 18:3110–3117

    Article  PubMed  CAS  Google Scholar 

  30. Tishkoff SA, Reed FA, Friedlaender FR et al (2009) The genetic structure and history of Africans and African Americans. Science 324:1035–1044

    Article  PubMed  CAS  Google Scholar 

  31. Sexton KR, Franzini L, Day RS, Brewster A, Vernon SW, Bondy ML (2011) A review of body size and breast cancer risk in Hispanic and African American women. Cancer 117:5271–5281

    Article  PubMed  Google Scholar 

  32. Marchbanks PA, McDonald JA, Wilson HG et al (2002) The NICHD Women’s Contraceptive and Reproductive Experiences Study: methods and operational results. Ann Epidemiol 12:213–221

    Article  PubMed  Google Scholar 

  33. Rothman KJ (1986) Modern epidemiology, 1st edn. Little, Brown and Co, Boston

    Google Scholar 

  34. Greenland S, Thomas DC (1982) On the need for the rare disease assumption in case–control studies. Am J Epidemiol 116:547–553

    PubMed  CAS  Google Scholar 

  35. Miettinen O (1976) Estimability and estimation in case-referent studies. Am J Epidemiol 103:226–235

    PubMed  CAS  Google Scholar 

  36. Lavigne JA, Helzlsouer KJ, Huang HY et al (1997) An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer. Cancer Res 57:5493–5497

    PubMed  CAS  Google Scholar 

  37. Hayashi S, Watanabe J, Nakachi K, Kawajiri K (1991) Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem 110:407–411

    PubMed  CAS  Google Scholar 

  38. Holt SK, Rossing MA, Malone KE, Schwartz SM, Weiss NS, Chen C (2007) Ovarian cancer risk and polymorphisms involved in estrogen catabolism. Cancer Epidemiol Biomarkers Prev 16:481–489

    Article  PubMed  CAS  Google Scholar 

  39. Crofts F, Cosma GN, Currie D, Taioli E, Toniolo P, Garte SJ (1993) A novel CYP1A1 gene polymorphism in African-Americans. Carcinogenesis 14:1729–1731

    Article  PubMed  CAS  Google Scholar 

  40. Sakoda LC, Blackston C, Doherty JA et al (2008) Polymorphisms in steroid hormone biosynthesis genes and risk of breast cancer and fibrocystic breast conditions in Chinese women. Cancer Epidemiol Biomarkers Prev 17:1066–1073

    Article  PubMed  CAS  Google Scholar 

  41. Kristensen VN, Andersen TI, Lindblom A, Erikstein B, Magnus P, Borresen-Dale AL (1998) A rare CYP19 (aromatase) variant may increase the risk of breast cancer. Pharmacogenetics 8:43–48

    Article  PubMed  CAS  Google Scholar 

  42. Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H (1996) Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 11:306–311

    Article  PubMed  CAS  Google Scholar 

  43. Sano M, Inoue S, Hosoi T et al (1995) Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun 217:378–383

    Article  PubMed  CAS  Google Scholar 

  44. Kristensen VN, Andersen TI, Erikstein B et al (1998) Single tube multiplex polymerase chain reaction genotype analysis of GSTM1, GSTT1 and GSTP1: relation of genotypes to TP53 tumor status and clinicopathological variables in breast cancer patients. Pharmacogenetics 8:441–447

    Article  CAS  Google Scholar 

  45. Fryer AA, Zhao L, Alldersea J, Pearson WR, Strange RC (1993) Use of site-directed mutagenesis of allele-specific PCR primers to identify the GSTM1 A, GSTM1 B, GSTM1 A, B and GSTM1 null polymorphisms at the glutathione S-transferase, GSTM1 locus. Biochem J 295(Pt 1):313–315

    PubMed  CAS  Google Scholar 

  46. Kosoy R, Nassir R, Tian C et al (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30:69–78

    Article  PubMed  Google Scholar 

  47. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  49. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300

    Google Scholar 

  50. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  PubMed  CAS  Google Scholar 

  51. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  52. National Center for Biotechnology Information (2009) Entrez SNP website

  53. Wacholder S (1991) Practical considerations in choosing between the case-cohort and nested case–control designs. Epidemiol Res 2:155–158

    Article  CAS  Google Scholar 

  54. Dunn BK, Agurs-Collins T, Browne D, Lubet R, Johnson KA (2010) Health disparities in breast cancer: biology meets socioeconomic status. Breast Cancer Res Treat 121:281–292

    Article  PubMed  Google Scholar 

  55. Rebbeck TR, Troxel AB, Shatalova EG et al (2007) Lack of effect modification between estrogen metabolism genotypes and combined hormone replacement therapy in postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 16:1318–1320

    Article  PubMed  CAS  Google Scholar 

  56. Bailey LR, Roodi N, Verrier CS, Yee CJ, Dupont WD, Parl FF (1998) Breast cancer and CYPIA1, GSTM1, and GSTT1 polymorphisms: evidence of a lack of association in Caucasians and African Americans. Cancer Res 58:65–70

    PubMed  CAS  Google Scholar 

  57. Bailey LR, Roodi N, Dupont WD, Parl FF (1998) Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. Cancer Res 58:5038–5041

    PubMed  CAS  Google Scholar 

  58. Le Marchand L, Donlon T, Kolonel LN, Henderson BE, Wilkens LR (2005) Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 14:1998–2003

    Article  PubMed  Google Scholar 

  59. Liu J, Papasian C, Deng HW (2007) Incorporating single-locus tests into haplotype cladistic analysis in case–control studies. PLoS Genet 3:e46

    Article  PubMed  Google Scholar 

  60. The International HapMap Consortium (2003) The International HapMap Project Nature 426:789–796

    Google Scholar 

  61. MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Ris (2010) Postmenopausal estrogen monotherapy-associated breast cancer risk is modified by CYP17A1_-34_T>C polymorphism. Breast Cancer Res Treat 120:737–744

    Article  Google Scholar 

  62. Chen Y, Gammon MD, Teitelbaum SL et al (2008) Estrogen-biosynthesis gene CYP17 and its interactions with reproductive, hormonal and lifestyle factors in breast cancer risk: results from the Long Island Breast Cancer Study Project. Carcinogenesis 29:766–771

    Article  PubMed  CAS  Google Scholar 

  63. Justenhoven C, Hamann U, Schubert F et al (2008) Breast cancer: a candidate gene approach across the estrogen metabolic pathway. Breast Cancer Res Treat 108:137–149

    Article  PubMed  CAS  Google Scholar 

  64. Reding KW, Weiss NS, Chen C et al (2009) Genetic polymorphisms in the catechol estrogen metabolism pathway and breast cancer risk. Cancer Epidemiol Biomarkers Prev 18:1461–1467

    Article  PubMed  CAS  Google Scholar 

  65. Diergaarde B, Potter JD, Jupe ER et al (2008) Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 17:1751–1759

    Article  PubMed  CAS  Google Scholar 

  66. Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF (2000) Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res 60:3440–3444

    PubMed  CAS  Google Scholar 

  67. Goth-Goldstein R, Erdmann CA, Russell M (2003) Cytochrome P4501B1 expression in normal breast tissue, 23 ed. p. 275

  68. Murray GI, Taylor MC, McFadyen MC et al (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57:3026–3031

    PubMed  CAS  Google Scholar 

  69. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D (2000) Estrogens as endogenous genotoxic agents–DNA adducts and mutations. J Natl Cancer Inst Monogr 27:75–93

    Google Scholar 

  70. Yager JD (2000) Endogenous estrogens as carcinogens through metabolic activation. J Natl Cancer Inst Monogr 27:67–73

    Google Scholar 

  71. de Jong MM, Nolte IM, te Meerman GJ et al (2002) Genes other than BRCA1 and BRCA2 involved in breast cancer susceptibility. J Med Genet 39:225–242

    Article  PubMed  Google Scholar 

  72. Weiss LK, Burkman RT, Cushing-Haugen KL et al (2002) Hormone replacement therapy regimens and breast cancer risk. Obstet Gynecol 100:1148–1158

    Article  PubMed  CAS  Google Scholar 

  73. Brentano ST, Picado-Leonard J, Mellon SH, Moore CC, Miller WL (1990) Tissue-specific, cyclic adenosine 3′,5′-monophosphate-induced, and phorbol ester-repressed transcription from the human P450c17 promoter in mouse cells. Mol Endocrinol 4:1972–1979

    Article  PubMed  CAS  Google Scholar 

  74. Ma H, Wang Y, Sullivan-Halley J et al (2009) Breast cancer receptor status: do results from a centralized pathology laboratory agree with SEER registry reports? Cancer Epidemiol Biomarkers Prev 18:2214–2220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the study participants for their contribution to this research. The CARE study was supported by the National Institute of Child Health and Human Development, with additional support from the National Cancer Institute, through contracts with Emory University (N01 HD 3-3168), the Fred Hutchinson Cancer Research Center (N01 HD 2-3166), Karmanos Cancer Institute at Wayne State University (N01 HD 3-3174), the University of Pennsylvania (N01 HD-3-3176), and the University of Southern California (N01 HD 3-3175) and through an intraagency agreement with the Centers for Disease Control and Prevention (Y01 HD 7022). The research generating the AIMs data was supported by the National Cancer Institute (R03 CA 123584). KWR was supported by the Cancer Epidemiology and Biostatistics Training Grant (2 T32 CA 09168) and NINR grant K99NR012232. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the National Institutes of Health or the Centers for Disease Control and Prevention. This research was supported by funding from the National Institute of Child Health and Human Development with additional support from the Centers for Disease Control and Prevention and the National Cancer Institute.

Conflict of interest

The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerryn W. Reding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reding, K.W., Chen, C., Lowe, K. et al. Estrogen-related genes and their contribution to racial differences in breast cancer risk. Cancer Causes Control 23, 671–681 (2012). https://doi.org/10.1007/s10552-012-9925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-012-9925-x

Keywords

Navigation