Skip to main content
Log in

Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

miRNAs involved in the biosynthesis of artemisinin, an anti-malarial compound form the plant Artemisia annua, have been identified using computational approaches to find conserved pre-miRNAs in available A. annua UniGene collections. Eleven pre-miRNAs were found from nine families. Targets predicted for these miRNAs were mainly transcription factors for conserved miRNAs. No target genes involved in artemisinin biosynthesis were found. However, miR390 was predicted to target a gene involved in the trichome development, which is the site of synthesis of artemisinin and could be a candidate for genetic transformation aiming to increase the content of artemisinin. Phylogenetic analyses were carried out to determinate the relation between A. annua and other plant pre-miRNAs: the pre-miRNA-based phylogenetic trees failed to correspond to known phylogenies, suggesting that pre-miRNA primary sequences may be too variable to accurately predict phylogenetic relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Current Biol 16:927–932

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucleic Acids Res 35:D21–D25

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Wallaart TE, Janssen MH, Van LB, Jansen BJ, Posthumus MA, Schmidt CO, De Kraker JW, König WA, Franssen MC (1999) Amorpha-4, 11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854

    Article  PubMed  CAS  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29R

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832

    PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and Functional Diversification of MIRNA Genes. Plant Cell 23:431–442

    Article  PubMed  CAS  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  Google Scholar 

  • Freyhult E, Prusis P, Lapinsh M, Wikberg JE, Moulton V, Gustafsson MG (2005) Unbiased descriptor and parameter selection confirms the potential of proteochemometric modelling. BMC Bioinformatics 6:50

    Article  PubMed  Google Scholar 

  • Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  PubMed  CAS  Google Scholar 

  • Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol 19:586–595

    Article  PubMed  CAS  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed  Google Scholar 

  • Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D et al. (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug Artemisinin. Science 327:328–331

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Anderson J, Gillespie J, Mayne M (2008) uShuffle: a useful tool for shuffling biological sequences while preserving the k-let counts. BMC Bioinformatics 9:192

    Article  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8:38–44

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Zhou Y, Zhang J, Lu X, Zhang F, Shen Q, Wu S, Chen Y, Wang T, Tang K (2011) Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnol Appl Biochem 58:50–57

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell. 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Notredame C (2010) Computing Multiple Sequence/Structure Alignments with the T-Coffee Package. Curr Protoc Bioinformatics Chapter 3: pp 1–25

    Google Scholar 

  • Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45

    Article  PubMed  CAS  Google Scholar 

  • Parida SK, Anand Raj Kumar K, Dalal V, Singh NK, Mohapatra T (2006) UniGene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Quintero AL, Neme R, Zapata A, López C (2010) Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 10:138

    Article  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Bari R, Jones JDG (2010) A biotic or abiotic stress? In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological. Molecular and Genomic Foundation, Springer, Dordrecht, pp 113–116

    Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

    Article  PubMed  CAS  Google Scholar 

  • Rydén AM, Ruyter-Spira C, Litjens R, Takahashi S, Quax W, Osada H, Bouwmeester H, Kayser O (2010) Molecular cloning and characterization of a broad substrate terpenoidoxidoreductase from Artemisia annua. Plant Cell Physiol 51:1219–1228

    Article  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wang Y, Zhang Q, Qi Y, Guo D (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465

    Article  PubMed  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassicanapus. FEBS Lett 581:1464–1474

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. Plant Cell 1:347–361

    Article  Google Scholar 

  • Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acid Res 38:1382–1391

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006a) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Wang Q, Cobb GP, Anderson TA (2006b) Computational identification of microRNAs and their targets. Comput Biol Chem 30:395–407

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Article  PubMed  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Gaurav Sablok thanks Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University. Tatiana Tatarinova would like to thank the University of Glamorgan’s Research Investment Scheme for supporting this project and Dr Owain Kerton for editing. Financial support for Camilo López and Alvaro Perez comes from Dirección de Investigaciones sede Bogota (Universidad Nacional), Colciencias, and Ministerio de Agricultura de Colombia. This work has been partially funded by Spanish MICINN grant BIO2009-10799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Sablok.

Additional information

Álvaro L. Pérez-Quintero, Gaurav Sablok and Tatiana V. Tatarinova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Quintero, Á.L., Sablok, G., Tatarinova, T.V. et al. Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua . Biotechnol Lett 34, 737–745 (2012). https://doi.org/10.1007/s10529-011-0808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0808-0

Keywords

Navigation