Skip to main content

Advertisement

Log in

A silviculture-oriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Natural regeneration in Pinus pinea stands commonly fails throughout the Spanish Northern Plateau under current intensive regeneration treatments. As a result, extensive direct seeding is commonly conducted to guarantee regeneration occurrence. In a period of rationalization of the resources devoted to forest management, this kind of techniques may become unaffordable. Given that the climatic and stand factors driving germination remain unknown, tools are required to understand the process and temper the use of direct seeding. In this study, the spatio-temporal pattern of germination of P. pinea was modelled with those purposes. The resulting findings will allow us to (1) determine the main ecological variables involved in germination in the species and (2) infer adequate silvicultural alternatives. The modelling approach focuses on covariates which are readily available to forest managers. A two-step nonlinear mixed model was fitted to predict germination occurrence and abundance in P. pinea under varying climatic, environmental and stand conditions, based on a germination data set covering a 5-year period. The results obtained reveal that the process is primarily driven by climate variables. Favourable conditions for germination commonly occur in fall although the optimum window is often narrow and may not occur at all in some years. At spatial level, it would appear that germination is facilitated by high stand densities, suggesting that current felling intensity should be reduced. In accordance with other studies on P. pinea dispersal, it seems that denser stands during the regeneration period will reduce the present dependence on direct seeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003) Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiol 23(1):33–41

    Article  PubMed  Google Scholar 

  • Baeza MJ, Roy J (2008) Germination of an obligate seeder (Ulex parviflorus) and consequences for wildfire management. For Ecol Manag 256:685–693

    Article  Google Scholar 

  • Barbeito I, Pardos M, Calama R, Cañellas I (2008) Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics. Forestry 81(5):617–629. doi:10.1093/forestry/cpn037

    Article  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum press, New York

    Google Scholar 

  • Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849

    Article  PubMed  CAS  Google Scholar 

  • Calama R, Cañadas N, Montero G (2003) Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain. Ann For Sci 60:259–269

    Google Scholar 

  • Calama R, Montero G (2007) Cone and seed production from stone pine (Pinus pinea L.) stands in Central Range (Spain). Eur J For Res 126(1):23–35. doi:10.1007/s10342-005-0100-8

    Article  Google Scholar 

  • Calama R, Mutke S, Tomé J, Gordo J, Montero G, Tomé M (2011) Modelling spatial and temporal variability in a zero-inflated variable: the case of stone pine (Pinus pinea L.) cone production. Ecol Model 222(3):606–618. doi:10.1016/j.ecolmodel.2010.09.020

    Article  Google Scholar 

  • Calama R, Madrigal G, Manso R, Garriga E, Gordo FJ, Pardos M (2012) Germinación, emergencia y supervivencia de regenerado en Pinus pinea L. In: Gordo J, Calama R, Pardos M, Bravo F, Montero G (eds) La regeneración natural de los pinares en los arenales de la Meseta Castellana. Instituto Universitario de Investigación en Gestión Forestal Sostenible (Universidad de Valladolid-INIA), Valladolid

    Google Scholar 

  • Castro J, Zamora R, Hódar A, Gómez J (2005) Ecology of seed germination of Pinus sylvestris L. at its southern, Mediterranean distribution range. Investigación Agraria: Sistemas y Recursos Forestales 14(2):143–152

    Google Scholar 

  • Chambers J, Vander Wall S, Schupp E (1999) Seed and seedling ecology of piñon and juniper species in the Pygmy woodlands of Western North America. Bot Rev 65(1):1–38

    Article  Google Scholar 

  • Cochard R, Jackes BR (2005) Seed ecology of invasive tropical tree Parkinsonia aculeata. Plant Ecol 180:13–31

    Article  Google Scholar 

  • Cook A, Turner SR, Baskin JM, Baskin CC, Steadman KJ, Dixon KW (2008) Occurrence of physical dormancy in seeds of Australian sapindaceae: a survey of 14 species in nine genera. Ann Bot 101:1349–1362

    Article  PubMed  CAS  Google Scholar 

  • Cooke J, Cooke B, Gifford D (2002) Loblolly pine seed dormancy: constraints to germination. New For 23:239–256

    Article  Google Scholar 

  • De Castro M, Martín-Vide J, Alonso S (2005) The climate of Spain: past, present and scenarios for the 21st century. In: A preliminary assessment of the impacts in Spain due to the effects of climate change. ECCE Project-Final report. Ministerio de Medio Ambiente, Madrid

  • De Luis M, Raventós J, Wiegand T, González-Hidalgo JC (2008) Temporal and spatial differentiation in seedling emergence may promote species coexistence in Mediterranean fire-prone ecosystems. Ecography 31:620–629

    Article  Google Scholar 

  • Flores O, Gourlet-Fleury S, Picard N (2006) Local disturbance, forest structure and dispersal effects on sapling distribution of light-demanding and shade-tolerant species in a French Guianian forest. Acta Oecologica 29:141–154

    Article  Google Scholar 

  • Fortin M, DeBlois J (2007) Modelling tree recruitment with zero-inflated models: the example of hardwood stands in Southern Québec. For Sci 53(4):529–539

    Google Scholar 

  • Gordo FJ (2002) Cuarta Revisión de la Ordenación de los Montes Navales, Molinillo y La Reguera y La Vega y Zapardiel del término municipal de Tordesillas. Servicio Territorial de Medio Ambiente de Valladolid, Junta de Castilla y León, Valladolid

    Google Scholar 

  • Gordo FJ, Rojo LI, Calama R, Mutke S, Martín R, García M (2012) Selvicultura de regeneración natural de Pinus pinea L. en montes públicos de la provincia de Valladolid. In: Gordo J, Calama R, Pardos M, Bravo F, Montero G (eds) La regeneración natural de los pinares en los arenales de la Meseta Castellana. Instituto Universitario de Investigación en Gestión Forestal Sostenible (Universidad de Valladolid-INIA), Valladolid, p 254

    Google Scholar 

  • Hardegree SP, Flerchinger GN, Van Vactor SS (2003) Hydrothermal germination response and the development of probabilistic germination profiles. Ecol Model 167:305–322

    Article  Google Scholar 

  • Honda Y, Katoh K (2007) Strict requirement of fluctuating temperatures as a reliable gap signal in Picris hieracioides var. japonica seed germination. Plant Ecol 193:147–156

    Article  Google Scholar 

  • Kamkar B, Al-Alahmadi MJ, Mahdavi-Damghani A, Villalobos FJ (2012) Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Ind Crops Prod 35(1):192–198. doi:10.1016/j.indcrop.2011.06.033

    Article  Google Scholar 

  • Keyes CR, Maguire DA, Tappeiner JC (2009) Recruitment of ponderosa pine seedlings in the Cascade Range. For Ecol Manag 257:495–501

    Article  Google Scholar 

  • Krakowski J, El-Kassaby YA (2005) Lodgepole pine and white spruce germination: effects of stratification and simulated aging. Silvae Genetica 54(3):138–144

    Google Scholar 

  • Kuuluvainen T, Pukkala T (1989) Simulation of within-tree and between-tree shading of direct-radiation in a forest canopy: effect of crown shape and sun elevation. Ecol Model 49(1–2):89–100. doi:10.1016/0304-3800(89)90045-8

    Article  Google Scholar 

  • Lippai A, Smith PA, Price JW, Lloyd CJ (1996) Effects of temperature and water potential on germination of horehound (Marrubium vulgare) seeds from two Australian localities. Weed Sci 44:91–99

    CAS  Google Scholar 

  • Lucas-Borja M, Fonseca T, Parresol B, Silva-Santos P, García-Morote F, Tíscar-Oliver P (2011) Modelling Spanish black pine seedling emergence: Establishing management strategies for endangered forest areas. For Ecol Manag (in press)

  • Madrigal G, Pardos M, Garriga E, Montero G, Manso R, Calama R (2011) Sitios se ensayo INIA de regeneración natural en Pinus pinea. In: Gordo J, Calama R, Pardos M, Bravo F, Montero G (eds) La regeneración natural de Pinus pinea L. y Pinus pinaster Ait. en los arenales de la Meseta Castellana. Actas de las I Jornadas de Transferencia Tecnológica y Científica (in press)

  • Magini E (1955) Sulle condizioni di germinazione del pino d’Aleppo e del pino domestico. Italia Forestale e Montana Anno 40:106–124

    Google Scholar 

  • Manso R, Pardos M, Garriga E, De Blas S, Madrigal G, Calama R (2010) Modelling the spatial-temporal pattern of post-dispersal seed predation in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Paper presented at the Frugivores and Seed Dispersal: Mechanisms and Consequences of a Key Interaction for Biodiversity, Montpellier (France), 13th–18th June 2010

  • Manso R, Pardos M, Keyes CR, Calama R (2012) Modelling the spatio-temporal pattern of primary dispersal in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Ecol Model 226:11–21

    Article  Google Scholar 

  • Meyer SE, Pendleton BK (2005) Factors affecting seed germination and seedling establishment of a long-lived desert shrub (Coleogyne ramosissima: Rosaceae). Plant Ecol 178:171–187

    Article  Google Scholar 

  • Müller C (2000) Modelling soil-biosphere interactions. CABI, New York

    Google Scholar 

  • Nomiya H (2010) Differentiation of seed germination traits in relation to the natural habitats of three Ulmus species in Japan. J For Res 15:123–130

    Article  CAS  Google Scholar 

  • Ooi MKJ (2010) Delayed emergence and post-fire recruitment success: effects of seasonal germination, fire season and dormancy type. Aust J Bot 58:248–256

    Google Scholar 

  • Ordóñez JL, Franco S, Retana J (2004) Limitation of the recruitment of Pinus nigra in a gradient of post-fire environmental conditions. Ecoscience 11:296–304

    Google Scholar 

  • Pardos M, Puertolas J, Madrigal G, Garriga E, de Blas S, Calama R (2010) Seasonal changes in the physiological activity of regeneration under a natural light gradient in a Pinus pinea regular stand. For Syst 19(3):367–380

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R CT (2009) nlme: Linear and nonlinear mixed effects models. R package version 3.1-96

  • Prada MA, Gordo J, De Miguel J, Mutke S, Catalán G, Iglesias S, Gil L (1997) Las regiones de procedencia de Pinus pinea L. en España. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Puerta-Piñero C, Gómez JM, Zamora R (2006) Species-specific effects on topsoil development affect Quercus ilex seedling performance. Acta Oecologica 29:65–71

    Article  Google Scholar 

  • R DCT (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roman ES, Murphy SD, Swanton CJ (2000) Simulation of Chenopodium album seedling emergence. Weed Sci 48(2):217–224. doi:10.1614/0043-1745(2000)048[0217:socase]2.0.co;2

    Article  CAS  Google Scholar 

  • Ruano I, Pando V, Bravo F (2009) How do light and water influence Pinus pinaster Ait. germination and early seedling development? For Ecol Manag 258:2647–2653

    Article  Google Scholar 

  • Seiwa K, Ando M, Imaji A, Tomita M, Kanou K (2009) Spatio-temporal variation of environmental signals inducing seed germination in temperate conifer plantations and natural hardwood forests in northern Japan. For Ecol Manag 257:361–369

    Article  Google Scholar 

  • Silveira FAO, Negreiros D, Fernandes W (2004) Influência da luz e da temperatura na germinação de sementes de Marcetia taxifolia (A. St.-Hil.) DC. (Melastomataceae). Acta Botanica Brasilica 18(4):847–851

    Article  Google Scholar 

  • Silvertown J (1980) Leaf-canopy-induced seed dormancy in a grassland flora. New Phytol 85:109–118

    Article  Google Scholar 

  • Skordilis A, Thanos CA (1995) Seed stratification and germination strategy in the Mediterranean pines Pinus brutia and Pinus halepensis. Seed Sci Res 5:151–160

    Article  Google Scholar 

  • Snowdon P (1991) A ratio estimator for bias correction in logarithmic regressions. Can J For Res 21(5):720–724. doi:10.1139/x91-101

    Article  Google Scholar 

  • Thornley JHM (1986) A germination model: responses to time and temperature. J Theor Biol 123(4):481–492. doi:10.1016/s0022-5193(86)80215-6

    Article  Google Scholar 

  • Westoby M, Jurado E, Leishman M (1992) Comparative evolutionary ecology of seed size. Trends Ecol Evol 7(11):368–372

    Article  PubMed  CAS  Google Scholar 

  • Woollons RC (1998) Even-aged stand mortality estimation through a two-step regression process. For Ecol Manag 105(1–3):189–195. doi:10.1016/s0378-1127(97)00279-x

    Article  Google Scholar 

  • Wu HI, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field-theory: a spatial-analysis of resource interference among plants. Ecol Model 29(1–4):215–243. doi:10.1016/0304-3800(85)90054-7

    Article  Google Scholar 

  • Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R Statistics for Biology and Health. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

First of all, we would like to express our most sincere gratitude to Mathieu Fortin for his valuable advice and suggestions, which notably improved the scope of this study. We are also grateful to the Forest Service of the Junta de Castilla y León and in particular to Ayuntamiento de El Portillo for permission to carry out the field experiment. Finally, we wish to thank Santiago de Blas and Enrique Garriga for their help in the data collection and Eduardo López and Salvador Sastre for conducting the soil analysis. This research was supported by projects AGL 2010-15521 and RTA2007-00044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Manso.

Additional information

Communicated by M. Meincken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manso, R., Calama, R., Madrigal, G. et al. A silviculture-oriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment. Eur J Forest Res 132, 969–982 (2013). https://doi.org/10.1007/s10342-013-0724-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0724-z

Keywords

Navigation