Skip to main content

Advertisement

Log in

Flowering phenological changes in relation to climate change in Hungary

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The importance of long-term plant phenological time series is growing in monitoring of climate change impacts worldwide. To detect trends and assess possible influences of climate in Hungary, we studied flowering phenological records for six species (Convallaria majalis, Taraxacum officinale, Syringa vulgaris, Sambucus nigra, Robinia pseudoacacia, Tilia cordata) based on phenological observations from the Hungarian Meteorological Service recorded between 1952 and 2000. Altogether, four from the six examined plant species showed significant advancement in flowering onset with an average rate of 1.9–4.4 days per decade. We found that it was the mean temperature of the 2–3 months immediately preceding the mean flowering date, which most prominently influenced its timing. In addition, several species were affected by the late winter (January–March) values of the North Atlantic Oscillation (NAO) index. We also detected sporadic long-term effects for all species, where climatic variables from earlier months exerted influence with varying sign and little recognizable pattern: the temperature/NAO of the previous autumn (August-December) seems to influence Convallaria, and the temperature/precipitation of the previous spring (February–April) has some effect on Tilia flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdi H (2007) Bonferroni and Šidák corrections for multiple comparisons. In: Salkind N (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, CA

    Google Scholar 

  • Askeyev OV, Sparks TH, Askeyev IV, Tishin DV, Tryjanowski P (2010) East versus West: contrasts in phenological patterns? Glob Ecol Biogeogr 19:783–793

    Article  Google Scholar 

  • Bartholy J, Pongrácz R, Gelybó G (2009a) Climate signals of the North Atlantic Oscillation detected in the Carpathian basin. Appl Ecol Environ Res 7:229–240

    Article  Google Scholar 

  • Bartholy J, Pongrácz R, Torma C, Pieczka I, Kardos P, Hunyady A (2009b) Analysis of regional climate change modelling experiments for the Carpathian Basin. Int J Glob Warming 1:238–252

    Article  Google Scholar 

  • Beebee TJC (2002) Amphibian phenology and climate change. Conserv Biol 16:1454–1454

    Article  Google Scholar 

  • Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83

    Article  Google Scholar 

  • Buse A, Dury SJ, Woodburn RJW, Perrins CM, Good JEG (2002) Effects of elevated temperature on multi-species interactions: the case of Pedunculate Oak, Winter Moth and Tits. Funct Ecol 13:74–82

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proc Natonal Acad Sci U S A 109:9000–9005

    Article  CAS  Google Scholar 

  • Crimmins TM, Crimmins MA, Bertelsen D (2010) Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J Ecol 98:1042–1051

    Article  Google Scholar 

  • Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Chang Biol 10:259–272

    Article  Google Scholar 

  • Dövényi Z (2010) Magyarország kistájainak katasztere. MTA FKI, Budapest (in hungarian)

    Google Scholar 

  • Dunay S (1984) Növényfenológiai megfigyelések Magyarországon. Légkör 29:2–9 (in hungarian)

    Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Chang Biol 13:1737–1747

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  Google Scholar 

  • Fu YH, Piao S, Zhao H, Jeong S-J, Wang X, Vitasse Y, Ciais P, Janssens IA (2014) Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob Chang Biol 12:3743–3755

    Article  Google Scholar 

  • Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58

    Article  Google Scholar 

  • Gordo O, Sanz J (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106

    Article  Google Scholar 

  • Hurrel JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Chang 36:301–326

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007 - Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Jatczak K, Walawender J (2009) Average rate of phenological changes in Poland according to climatic changes—evaluation and mapping. Adv Sci Res 3:127–131

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  Google Scholar 

  • Kauserud H, Heegaard E, Semenov MA, Boddy L, Halvorsen R, Stige LC, Sparks TH, Gange AC, Stenseth NC (2010) Climate change and spring-fruiting fungi. Proc R Soc Biol 277:1169–1177

    Article  Google Scholar 

  • Keresztes B (1984) Az akác (Robinia pseudoacacia L). Akadémia Kiadó, Budapest (in hungarian)

    Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  Google Scholar 

  • Krüzselyi I, Bartholy J, Horányi A, Pieczka I, Pongrácz R, Szabó P, Szépszó G, Cs T (2011) The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble. Adv Sci Res 6:69–73

    Article  Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Morán-Tejeda E, Lorenzo-Lacruz J, Kenawy A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Glob Planet Chang 77:62–76

    Article  Google Scholar 

  • Meier U (1997) BBCH-Monograph: Growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin

    Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717

    Article  Google Scholar 

  • Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81

    Article  CAS  Google Scholar 

  • Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Migliavacca M, Sonnentag O, Keenan TF, Cescatti A, O’Keefe J, Richardson AD (2012) On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences 9:2063–2083

    Article  Google Scholar 

  • Molnár A, Tökölyi J, Végvári Z, Sramkó G, Sulyok J, Barta Z (2012) Pollination mode predicts phenological response to climate change in terrestrial orchids: a case study from central Europe. J Ecol 100:1141–1152

    Article  Google Scholar 

  • Nekovár J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (2008) COST Action 725 - The history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60:1927–1937

    Article  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstruction over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405

    Article  Google Scholar 

  • Peñuelas J, Filella I, Zhang I, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846

    Article  Google Scholar 

  • Pieczka I, Bartholy J, Pongrácz R, Hunyady A (2010) Climate change scenarios for Hungary based on numerical simulations with a dynamical climate model. In: Lirkov I, Margenov S, Waśniewski J (eds) Large-scale scientific computing. Springer, Berlin Heidelberg, pp 613–620

    Chapter  Google Scholar 

  • R Developmnet Core Team (2013) R: A Language and Environment for Statistical Computing. R foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org

    Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  Google Scholar 

  • Schaber J (2012) pheno: Auxiliary functions for phenological data analysis. R package version 1.6.

  • Scheifinger H, Menzel A, Koch E, Peter C, Ahas R (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. Int J Climatol 22:1739–1755

    Article  Google Scholar 

  • Schieber B, Janík R, Snopková Z (2009) Phenology of four broad-leaved forest trees in a submountain beech forest. J For Sci 55:15–22

    Google Scholar 

  • Schleip C, Sparks TH, Estrella N, Menzel A (2009) Spatial variation in onset dates and trends in phenology across Europe. Clim Res 39:249–260

    Article  Google Scholar 

  • Schwartz MD (1999) Advancing to full bloom: planning phenological research for the 21st century. Int J Biometeorol 42:113–118

    Article  Google Scholar 

  • Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Climatol 20:929–932

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351

    Article  Google Scholar 

  • Shaber J, Badeck FW (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol 22:973–982

    Article  Google Scholar 

  • Sneyers R (1990) On the statistical analysis of series of observations. World Meteorological Organization, Geneva

    Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  Google Scholar 

  • Sparks TH, Górska-Zajaczkowska M, Wojtowicz W, Tryjanowski P (2011) Phenological changes and reduced seasonal synchrony in western Poland. Int J Biometeorol 55:447–453

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, Lima M (2002) Ecological Effects of Climate Fluctuations. Science 297:1292–1296

    Article  CAS  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc R Soc Lond B Biol Sci 270:2087–2096

    Article  Google Scholar 

  • Szabó B, Lehoczky A, Filzmoser P, Templ M, Szentkirályi F, Pongrácz R, Ortner T, Mert C, Czúcz B and the SN Pheno Team (2014) From South to North: flowering phenological responses at different geographical latitudes in 12 European countries. In: European Geosciences Union (EGU) General Assembly, Vienna, pp EGU2014-9489.

  • Szalai S, Bella S, Németh Á, Dunay S (2008) History of Hungarian phenological observations. In: Nekovar J et al (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels, pp 174–182

    Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16:3304–3313

    Article  Google Scholar 

  • Tooke F, Battey NH (2010) Temperate flowering phenology. J Exp Bot 61:2853–2862

    Article  CAS  Google Scholar 

  • Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17

    Article  Google Scholar 

  • van der Loo MPJ (2010) Distribution based outlier detection in univariate data. Statistics Netherlands, The Hague/Heerlen

    Google Scholar 

  • Varga Z, Varga-Haszonits Z, Enzsolne Gerencser E, Zs L, Milics G (2012) Bioclimatological analysis of the development of lilac (Robinia pseudoacacia L.). Acta Agronomica Ovariensis 54:35–52 (in hungarian)

    Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Biol 272:2561–2569

    Article  Google Scholar 

  • Walkovszky A (1998) Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary. Int J Biometeorol 41:155–160

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Wickham H (2007) Reshaping data with the reshape Package. J Stat Softw 21:1–20

    Article  Google Scholar 

  • Zsilinszki A (2014) A 2012-13-as tél szinoptikus sajátosságainak értékelése NAO, AO távkapcsolat elemzések bevonásával. Dissertation in hungarian, Loránd Eötvös University

Download references

Acknowledgments

This research was supported by the grant of the Hungarian Scientific Research Fund (OTKA 81979), project of “Establishing the method of satellite phenological observations for ecosystems response to global change detection.” Thanks to Prof. Filzmoser, Annamária Lehoczky, and Ákos Németh for providing valuable comments and suggestions on the manuscript. The work of Bálint Czúcz was supported by the János Bolyai research fellowship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Szabó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, B., Vincze, E. & Czúcz, B. Flowering phenological changes in relation to climate change in Hungary. Int J Biometeorol 60, 1347–1356 (2016). https://doi.org/10.1007/s00484-015-1128-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1128-1

Keywords

Navigation