Skip to main content

Advertisement

Log in

Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981–2000 and 2031–2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981–2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031–2050 than in 1981–2000, indicating that the impacts of downscaling are unlikely to be stationary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archibald S, Scholes RJ (2007) Leaf green-up in a semi-arid African savanna—separating tree and grass responses to environmental cues. J Veg Sci 18:583–594

    Google Scholar 

  • Baldocchi D (2008) “Breathing” of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Battles JJ, Robards T, Das A, Waring K, Gilless JK, Biging G, Schurr F (2008) Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California. Clim Chang 87(Suppl 1):S193–S213

    Article  Google Scholar 

  • Caffarra A, Zottele F, Gleeson E, Donnelly A (2014) Spatial heterogeneity in the timing of birch budburst in response to future climate warming in Ireland. Int J Biometeorol 58:509–519

    Article  Google Scholar 

  • Callaway RM (1990) Effects of soil water distribution on the lateral root development of three species of California oaks. Am J Bot 77:1469–1475

    Article  Google Scholar 

  • Chiang JM, Brown KJ (2007) Improving the budburst phenology subroutine in the forest carbon model PnET. Ecol Model 205:515–526

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22:1–13

    Article  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao X (2005) Spatial analysis of growing season length control over net ecosystem exchange. Glob Chang Biol 11:1777–1787

    Article  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci U S A 103:13740–13744

    Article  CAS  Google Scholar 

  • Dickinson R, Errico R, Giorgi F, Bates G (1989) A regional climate model for the western United States. Clim Chang 15:383–422

    Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz J-C, Ginoux P, Lin S-J, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee H-C, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevlikova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519

    Article  Google Scholar 

  • Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J, Kimball J, Piepmeier JR, Koster RD, Martin N, McDonald KC, Moghaddam M, Moran S, Reichle R, Shi J-C, Spencer MW, Thurman SW, Tsang L, Van Zyl J (2010) The Soil Moisture Active Passive (SMAP) mission. Proc IEEE 98:704–716

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099

    Article  Google Scholar 

  • Fitzjarrald DR, Acevedo OC, Moore KE (2001) Climatic consequences of leaf presence in the eastern United States. J Clim 14:598–614

    Article  Google Scholar 

  • Flint LE, Flint AL (2012) Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol Process 1:2

    Article  Google Scholar 

  • Friedl MA, Gray JM, Melaas EK, Richardson AD, Hufkens K, Keenan TF, Bailey A, O’Keefe J (2014) A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ Res Lett 9:054006

    Article  Google Scholar 

  • Fryer JL (2007) Quercus douglasii. In: Fire effects information system [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/. [2014, August 23].

  • Ganguly S, Friedl MA, Tan B, Zhang X, Verma M (2010) Land surface phenology from MODIS: characterization of the collection 5 global land cover dynamics product. Remote Sens Environ 114:1805–1816

    Article  Google Scholar 

  • Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3:941–963

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106

    Article  Google Scholar 

  • Griffin JR (1976) Regeneration in Quercus lobata savannas, Santa Lucia Mountains, California. Am Midl Nat 95:422–435

    Article  Google Scholar 

  • Haggerty BP, Matthews ER, Gerst KL, Evenden AG, Mazer SJ (2013) The California phenology project: tracking plant responses to climate change. Madrono 60:1–3

    Article  Google Scholar 

  • Howard JL (1992a) Aesculus californica. In: Fire effects information system, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [Downloaded on 15 July 2015].

  • Howard JL (1992b) Quercus lobata. In: Fire effects information system, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/. [Downloaded on 15 July 2015].

  • Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604

    Article  Google Scholar 

  • Hur J, Ahn J-B (2014) The change of first-flowering date over South Korea projected from downscaled IPCC AR5 simulation: peach and pear. Int J Climatol. doi:10.1002/joc.4098

    Google Scholar 

  • Jeong S-J, Medvigy D, Shevliakova E, Malyshev S (2012) Uncertainties in terrestrial carbon budgets related to spring phenology. J Geophys Res 117:G01030. doi:10.1029/2011JG001868

    Google Scholar 

  • Jeong S-J, Medvigy D, Shevliakova E, Malyshev S (2013) Predicting changes in temperate forest budburst using continental-scale observations and models. Geophys Res Lett 40:359–364. doi:10.1029/2012GL054431

    Article  Google Scholar 

  • Kim J (2001) A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2. Geophys Res Lett 28:2951–2954

    Article  CAS  Google Scholar 

  • Knorr W, Kaminski T, Scholze M, Gobron N, Pinty B, Giering R, Mathieu P-P (2010) Carbon cycle data assimilation with a generic phenology model. J Geophys Res 115:G04017

    Article  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  Google Scholar 

  • LaMarche VC Jr, Hirschboeck KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126

    Article  Google Scholar 

  • Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate research. Bull Am Meteorol Soc 84:89–95. doi:10.1175/BAMS-84-1-89

    Article  Google Scholar 

  • Levis S, Bonan GB (2004) Simulating springtime temperature patterns in the community atmosphere model coupled to the community land model using prognostic leaf area. J Clim 17:4531–4540

    Article  Google Scholar 

  • Luquez V, Hall D, Albrectsen BR, Karlsson J, Ingvarsson P, Jansson S (2008) Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet Genomes 4:279–292

    Article  Google Scholar 

  • Ma S, Baldocchi DD, Xu L, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agr Forest Meteorol 147:157–171

    Article  Google Scholar 

  • Maak K, von Storch H (1997) Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in northern Germany. Int J Biometeorol 41:5–12

    Article  Google Scholar 

  • Matulla C, Scheifinger H, Menzel A, Koch E (2003) Exploring two methods for statistical downscaling of Central European phenological time series. Int J Biometeorol 48:56–64

    Article  CAS  Google Scholar 

  • Medvigy D, Walko RL, Avissar R (2008) Modeling the interannual variability of the Amazon hydroclimate. Geophys Res Lett 35:L15817. doi:10.1029/2008GL034941

    Article  Google Scholar 

  • Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012a) An overview of the global historical climatology network-daily database. J Atmos Ocean Technol 29:897–910. doi:10.1175/JTECH-D-11-00103.1

    Article  Google Scholar 

  • Menne MJ, Durre I, Korzeniewski B, McNeal S, Thomas K, Yin X, Anthony S, Ray R, Vose RS, Gleason BE, Houston TG (2012b) Global historical climatology network-daily (GHCN-Daily), Version 3.20. NOAA National Climatic Center. http://doi.org/10.7289/V5D21VHZ. [accessed 19 June 2015].

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Migliavacca M, Sonnentag O, Keenan TF, Cescatti A, O’Keefe J, Richardson AD (2012) On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences 9:2063–2083

    Article  Google Scholar 

  • Moore KE, Fitzjarrald DR, Sakai RK, Goulden ML, Munger JW, Wofsy SC (1996) Seasonal variation in radiative and turbulent exchange at a deciduous forest in central Massachusetts. J Appl Meteorol 35:122–134

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, O’Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Chang Biol 15:961–975

    Article  Google Scholar 

  • Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186:900–910

    Article  Google Scholar 

  • Park H, Jeong S-J, Ho C-H, Kim J, Brown ME, Schaepman ME (2015) Nonlinear response of vegetation green-up to local temperature variations in temperate and boreal forests in the Northern Hemisphere. Remote Sens Environ 165:100–108

    Article  Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Chang Biol 8:531–544

    Article  Google Scholar 

  • Pettorelli N, Mysterud A, Yoccoz NG, Langvatn R, Stenseth NC (2005) Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proc R Soc B 272:2357–2364

    Article  Google Scholar 

  • Richardson AD, O’Keefe J (2009) Phenological differences between understory and overstory: a case study using the long-term Harvard forest records. In Noormets A (ed) Phenology of ecosystem processes. Springer, New York, pp. 87–117. doi: 10.1007/978-1-4419-0026-5_4

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331

    Article  CAS  Google Scholar 

  • Richardson AD, Black TA, Ciais P et al (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B Biol Sci 365:3227–3246

    Article  Google Scholar 

  • Richardson AD, Anderson RS, Arain MA et al (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob Chang Biol 18:566–584

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric Fo0072 Meteorol 169:156–173

    Article  Google Scholar 

  • Ryu Y, Baldocchi DD, Ma S, Hehn T (2008) Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J Geophys Res 113:D09104. doi:10.1029/2007JD009263

    Article  Google Scholar 

  • Sanz-Pérez V, Castro-Días P, Valladares F (2009) Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks. Plant Biol 11:142–151

    Article  Google Scholar 

  • Schwartz MD (1992) Phenology and springtime surface-layer change. Mon Weather Rev 120:2570–2578

    Article  Google Scholar 

  • Schwartz MD, Karl TR (1990) Spring phenology: nature’s experiment to detect the effect of “green-up” on surface maximum temperature. Mon Weather Rev 118:883–890

    Article  Google Scholar 

  • Schwartz MD, Betancourt JL, Weltzin JF (2012) From Caprio’s lilacs to the USA National Phenology Network. Front Ecol Environ 10:324–327

    Article  Google Scholar 

  • Shen M, Cong N, Cao R (2014) Temperature sensitivity as an explanation of the latitudinal patter of green-up date trend in Northern Hemisphere vegetation during 1982–2008. Int J Climatol. doi:10.1002/joc.4227

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers JG (2008) A description of the advanced research WRF version 3, NCAR Tech. Note, NCAR/TN-475 + STR, 8 pp., Natl. Cent. for Atmos. Res., Boulder, Colo., U.S.A. [Available at http://www.mmm.ucar. edu/wrf/users/docs/arw v3.pdf.]

  • Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19:3806–3823

    Article  Google Scholar 

  • Stöckli R, Rutishauser T, Baker I, Liniger MA, Denning AS (2011) A global reanalysis of vegetation phenology. J Geophys Res 116:G03020. doi:10.1029/2010JG001545

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • USA National Phenology Network (2015) Plant phenology data for the United States, 2012–2015. USA-NPN, Tucson, Data set accessed 2015-06-17 at http://www.usanpn.org/results/data

    Google Scholar 

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6:1161–1171

    Article  Google Scholar 

  • Waddell KL, Barrett TM (2005) Oak woodlands and other hardwood forests of California, 1990s. PNW-RB-245. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, 94 pp

    Google Scholar 

  • Walko RL, Avissar R (2011) A direct method for constructing refined regions in unstructured conforming triangular-hexagonal computational grids: application to OLAM. Mon Weather Rev 139:3923–3937

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  Google Scholar 

  • Xia Y, Mitchell K, Ek M, Sheffield J, Cosgrove B, Wood E, Luo L, Alonge C, Wei H, Meng J, Livneh B, Lettenmaier D, Koren V, Duan Q, Mo K, Fan Y, Mocko D (2012) Continental-scale water and energy flux analysis and validation for the North American land data assimilation system project phase 2 (NLDAS-2): 1. intercomparison and application of model products. J Geophys Res 117:D03109. doi:10.1029/2011JD016048

    Google Scholar 

  • Zha T, Barr AG, van der Kamp G, Black TA, McCaughey JH, Flanagan LB (2010) Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agric For Meteorol 150:1476–1484

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agriculture and Food Research Initiative of the US Department of Agriculture National institute of Food and Agriculture grant 2011-67004-30224. The observed budburst data were provided by the USA National Phenology Network (http://www.usanpn.org) and the many participants who contribute to its Natures Notebook program. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development for software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Medvigy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvigy, D., Kim, S.H., Kim, J. et al. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate. Int J Biometeorol 60, 935–944 (2016). https://doi.org/10.1007/s00484-015-1086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1086-7

Keywords

Navigation