Skip to main content

Advertisement

Log in

The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

At the beginning of 2015, as one year earlier in 2014, the scientific community anticipated that El Niño conditions could develop in the tropical Pacific by year-end. Such projections were related to the occurrence of westerly wind bursts during winter–spring of each year that generated strong downwelling Kelvin waves indicative of an emerging El Niño. However, the event’s progression quickly stalled in 2014, but actively continued in 2015, leading to an extreme warm event (comparable to 1997 or 1982). Here, we compare climate evolution during these two years using satellite observations and numerical simulations. We show that during 2014, El Niño development was interrupted mid-year by an exceptionally strong easterly wind burst, whereas during the second year it continued through the summer. Further, we show that the failed 2014 event created favorable conditions for El Niño development during the next year, as it kept ocean heat content recharged and the western Pacific warm pool extended eastward. Subsequently, the winter–spring westerly wind bursts in 2015 were followed by a series of state-dependent westerly bursts as part of a strong positive Bjerknes feedback. Analogue simulations with a coupled GCM wherein we superimpose the observed sequences of westerly and easterly wind bursts support these conclusions, stressing the role of the failed 2014 event in preconditioning the ocean–atmosphere system for the development of an extreme El Niño. In our simulations the probability of an extreme event following early-year westerly wind bursts increases from 14% to nearly 60% due to this preconditioning. Thus, the interplay between westerly and easterly wind bursts shapes El Niño development and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amaya DJ, Xie SP, Miller AJ, McPhaden MJ (2015) Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J Geophys Res Oceans 120(10):6782–6798

    Article  Google Scholar 

  • An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(12):2399–2412

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Nino Modoki and its possible teleconnection. J Geophys Res Oceans 112(C11). doi:10.1029/2006jc003798

  • Bond NA, Cronin MF, Freeland H, Mantua N (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42(9):3414–3420

    Article  Google Scholar 

  • Brown J, Fedorov AV (2010) Estimating the diapycnal transport contribution to warm water volume variations in the tropical Pacific ocean. J Clim 23:221–237

    Article  Google Scholar 

  • Cai WJ, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu LX, England MH, Wang GJ, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Nino events due to greenhouse warming. Nat Clim Change 4(2):111–116

    Article  Google Scholar 

  • Capotondi A (2013) ENSO diversity in the NCAR CCSM4 climate model. J Geophys Res Oceans 118(10):4755–4770

    Article  Google Scholar 

  • Capotondi A et al (2015) Understanding ENSO diversity. B Am Meteorol Soc 96(6):921–938

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303(5660):978–983

    Article  Google Scholar 

  • Chen DK, Lian T, Fu CB, Cane MA, Tang YM, Murtugudde R, Song XS, Wu QY, Zhou L (2015) Strong influence of westerly wind bursts on El Nino diversity. Nat Geosci 8(5):339–345

    Article  Google Scholar 

  • Chiodi AM, Harrison DE (2015) Equatorial Pacific Easterly wind surges and the onset of La Niña Events. J Clim 28(2):776–792

    Article  Google Scholar 

  • Chiodi AM, Harrison DE, Vecchi GA (2014) Subseasonal atmospheric variability and El Nino waveguide warming: observed effects of the Madden–Julian oscillation and westerly wind events*. J Clim 27(10):3619–3642

    Article  Google Scholar 

  • Clarke AJ (2008) An introduction to the dynamics of El Nino and the southern oscillation. Academic Press, London

    Google Scholar 

  • Collins M, An SI, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3(6):391–397

    Article  Google Scholar 

  • Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and Pacific Decadal variability in the community climate system model version 4. J Clim 25(8):2622–2651

    Article  Google Scholar 

  • Drushka K, Bellenger H, Guilyardi E, Lengaigne M, Vialard J, Madec G (2015) Processes driving intraseasonal displacements of the eastern edge of the warm pool: the contribution of westerly wind events. Clim Dyn 44(3–4):735–755

    Article  Google Scholar 

  • ECMWF Spring El Niño Forecast (2014). http://www.ecmwf.int/en/forecasts/charts/seasonal/nino-plumes-public-charts-long-range-forecast. Accessed 18 Mar 2016

  • Eisenman I, Yu LS, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18(24):5224–5238

    Article  Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai WJ, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227

    Article  Google Scholar 

  • Fedorov AV (2002) The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Q J R Meteorol Soc 128(579):1–23

    Article  Google Scholar 

  • Fedorov AV, Philander SG (2000) Is El Nino changing? Science 288(5473):1997–2002

    Article  Google Scholar 

  • Fedorov AV, Philander SG (2001) A stability analysis of the tropical ocean-atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14(14):3086–3101

    Article  Google Scholar 

  • Fedorov AV, Harper SL, Philander SG, Winter B, Wittenberg A (2003) How predictable is El Nino? B Am Meteorol Soc 84(7):911

    Article  Google Scholar 

  • Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Nino events. Clim Dyn 44 (5–6):1381–1401

    Article  Google Scholar 

  • Gebbie G, Tziperman E (2009) Predictability of SST-modulated westerly wind bursts. J Clim 22(14):3894–3909

    Article  Google Scholar 

  • Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64(9):3281–3295

    Article  Google Scholar 

  • Gierach MM, Lee T, Turk D, McPhaden MJ (2012) Biological response to the 1997–98 and 2009–10 El Nino events in the equatorial Pacific Ocean. Geophys Res Lett 39. doi:10.1029/2012gl051103

  • Harrison DE, Chiodi AM (2009) Pre- and post-1997/98 westerly wind events and equatorial Pacific Cold tongue warming. J Clim 22(3):568–581

    Article  Google Scholar 

  • Harrison DE, Vecchi GA (1997) Westerly wind events in the tropical Pacific, 1986–95. J Clim 10(12):3131–3156

    Article  Google Scholar 

  • Hartten LM (1996) Synoptic settings of westerly wind bursts. J Geophys Res Atmos 101(D12):16997–17019

    Article  Google Scholar 

  • Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Nino of 2014. P Natl Acad Sci USA 113(8):2005–2010

    Article  Google Scholar 

  • Hu S, Fedorov AV (2017) The extreme El Niño of 2015-2016 and the end of global warming hiatus (submitted)

  • Hu ZZ, Kumar A, Jha B, Wang WQ, Huang BH, Huang BY (2012) An analysis of warm pool and cold tongue El Nios: air–sea coupling processes, global influences, and recent trends. Clim Dyn 38 (9–10):2017–2035

    Article  Google Scholar 

  • Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Nino events: an ocean energetics perspective. Geophys Res Lett 41(13):4654–4663

    Article  Google Scholar 

  • Iza M, Calvo N (2015) Role of stratospheric sudden warmings on the response to Central Pacific El Nino. Geophys Res Lett 42(7):2482–2489

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO.1. Conceptual model. J Atmos Sci 54(7):811–829

    Article  Google Scholar 

  • Jin FF, An SI, Timmermann A, Zhao J (2003) Strong El Nino events and nonlinear dynamical heating. Geophys Res Lett 30(3):20–21

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J Clim 22(3):615–632

    Article  Google Scholar 

  • Keen RA (1982) The role of cross-equatorial tropical cyclone pairs in the southern oscillation. Mon Weather Rev 110(10):1405–1416

    Article  Google Scholar 

  • Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325(5936):77–80

    Article  Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Nino events: cold tongue El Nino and warm pool El Nino. J Clim 22(6):1499–1515

    Article  Google Scholar 

  • Larson SM, Kirtman BP (2015). An alternate approach to ensemble ENSO forecast spread: application to the 2014 forecast. Geophys Res Lett 42(21):9411–9415.

    Article  Google Scholar 

  • Lengaigne M, Boulanger JP, Menkes C, Madec G, Delecluse P, Guilyardi E, Slingo J (2003) The March 1997 Westerly Wind Event and the onset of the 1997/98 El Nino: understanding the role of the atmospheric response. J Clim 16(20):3330–3343

    Article  Google Scholar 

  • Lengaigne M, Boulanger JP, Menkes C, Delecluse P, Slingo J (2004a) Westerly wind events in the tropical pacific and their influence on the coupled ocean-atmosphere system: a review. Geophys Monogr Ser 147:49–69

  • Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P, Cole J, Slingo J (2004b) Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim Dyn 23(6):601–620

  • Levine AFZ, Jin FF (2010) Noise-induced instability in the ENSO recharge oscillator. J Atmos Sci 67(2):529–542

    Article  Google Scholar 

  • Levine, AFZ, McPhaden MJ (2016) How the July 2014 Easterly Wind Burst Gave the 2015–6 El Niño a head start. Geophys Res Lett 43(12):6503–6510

    Article  Google Scholar 

  • Lopez H, Kirtman BP (2013) Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys Res Lett 40(17):4722–4727

    Article  Google Scholar 

  • Lopez H, Kirtman BP (2014). WWBs, ENSO predictability, the spring barrier and extreme events. J Geophys Res Atmos, 119(17)

  • Ludescher J, Gozolchiani A, Bogachev MI, Bunde A, Havlin S, Schellnhuber HJ (2014) Very early warning of next El Nino. Proc Natl Acad Sci USA 111(6):2064–2066

    Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4(10):888–892

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Nino. Science 283(5404):950–954

    Article  Google Scholar 

  • McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39. doi:10.1029/2012gl051826

  • McPhaden MJ (2015) Commentary: playing hide and seek with El Nino. Nat Clim Change 5(9):791–795

    Article  Google Scholar 

  • Menkes CE, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014) About the role of Westerly wind events in the possible development of an El Niño in 2014. Geophys Res Lett 41(18):6476–6483

    Article  Google Scholar 

  • Min QY, Su JZ, Zhang RH, Rong XY (2015) What hindered the El Nino pattern in 2014? Geophys Res Lett 42(16):6762–6770

    Article  Google Scholar 

  • NASA Scientific News (2014). http://science.nasa.gov/science-news/science-at-nasa/2014/19may_elnino. Accessed 18 Mar 2016

  • NOAA Climate Prediction Center (2014). http://www.cpc.ncep.noaa.gov/products/expert_assessment/ENSO_DD_archive.shtml. Accessed 18 Mar 2016

  • Philander SG (1990) El Niño, La Niña, and the southern oscillation. International geophysics series, vol 46. Academic Press, San Diego

    Google Scholar 

  • Puy M, Vialard J, Lengaigne M, Guilyardi E (2015) Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Clim Dyn:1–24

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang WQ (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625

    Article  Google Scholar 

  • Sarachik ES, Cane MA (2010) The El Niño-Southern oscillation phenomenon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Seiki A, Takayabu YN (2007) Westerly Wind Bursts and Their Relationship with Intraseasonal Variations and ENSO. Part II: energetics over the Western and Central Pacific. Mon Weather Rev 135:3346–3361

    Article  Google Scholar 

  • Su J, Xiang B, Wang B, Li T (2014) Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys Res Lett 41(24):9058–9064

    Article  Google Scholar 

  • Takahashi K, Dewitte B (2015) Strong and moderate nonlinear El Niño regimes. Clim Dyn:1–19

  • Tollefson J (2014a) El Niño monitoring system in failure mode. Nature

  • Tollefson J (2014b) El Nino tests forecasters. Nature 508(7494):20–21

  • Wang CZ, Wang X (2013) Classifying El Nino Modoki I and II by different impacts on rainfall in Southern China and Typhoon Tracks. J Clim 26(4):1322–1338

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Delworth TL, Vecchi GA, Zeng F (2014) ENSO modulation: is it decadally predictable? J Clim 27(7):2667–2681

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461(7263):511–570

    Article  Google Scholar 

  • Yu L, Weller RA, Liu WT (2003). Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J Geophys Res Oceans 108(C4)

  • Zhang HM, Bates JJ, Reynolds RW (2006) Assessment of composite global sampling: sea surface wind speed. Geophys Res Lett 33(17). doi:10.1029/2006gl027086

  • Zhu JS, Kumar A, Huang BH, Balmaseda MA, Hu ZZ, Marx L, Kinter JL (2016) The role of off-equatorial surface temperature anomalies in the 2014 El Nino prediction. Sci Rep 6. doi:10.1038/Srep19677

Download references

Acknowledgements

This research was supported by funding to A.V.F. from NOAA (Grant NA14OAR4310277) and NASA, including an Earth and Space Sciences Graduate Fellowship to S.H. We also acknowledge computational support from the Yale University Faculty of Arts and Sciences High Performance Computing facility and from the NSF/NCAR Yellowstone Supercomputing Center. We also thank Brian Dobbins for his help in setting up computational environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shineng Hu.

Additional information

This paper is a contribution to the special collection on ENSO Diversity. The special collection aims at improving understanding of the origin, evolution, and impacts of ENSO events that differ in amplitude and spatial patterns, in both observational and modeling contexts, and in the current as well as future climate scenarios. This special collection is coordinated by Antonietta Capotondi, Eric Guilyardi, Ben Kirtman and Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Fedorov, A.V. The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dyn 52, 7339–7357 (2019). https://doi.org/10.1007/s00382-017-3531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3531-2

Keywords

Navigation