Skip to main content
Log in

A correlated shortening of the North and South American monsoon seasons in the past few decades

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Our observational analysis shows that the wet seasons of the American monsoon systems have shortened since 1978 due to correlated earlier retreats of the North American monsoon (NAM) and late onsets of the southern Amazon wet season, an important part of the South American monsoon (SAM). These changes are related to the combination of the global sea surface temperature (SST) warming mode, the El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), the westward shift of the North Atlantic subtropical high (NASH), and the enhancement of Pacific South American and Pacific North American wave train patterns, which induces variations of the regional circulation at interannual and decadal scales. The joint contributions from these forcing factors are associated with a stronger and more equatorward regional Hadley cell, which enhances convergence towards the equator, strengthening and possibly delaying the retreat of the tropical part of the NAM. This in turn accelerates the demise of the northern NAM and delays the reversal of the cross-equatorial flow over South America, reducing moisture transport to the SAM and delaying its onset. In addition, the thermodynamic response to warming appears to cause local drier land conditions over both regions, reinforcing the observed changes in these monsoons. Although previous studies have identified the isolated influence of the regional Hadley cell, ENSO, AMO, global SST warming, and NASH on the NAM, the correlated changes between NAM and SAM through variations of the cross-equatorial flow had not been established before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adams DK, Comrie AC (1997) The North American monsoon. Bull Am Meteorol Soc 78:2197–2213

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Suskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Anderson BT, Kanamaru H, Roads JO (2004) The summertime atmospheric hydrologic cycle over the southwestern United States. J Clim 5:679–692

    Google Scholar 

  • Apaestegui J, Cruz FW, Siffedine A, Espinoza JC, Guyot JL, Khodri M, Strikis N, Santos RV, Cheng H, Edwards L, Carvalho E, Santini W (2014) Hydroclimate variability of the South American monsoon system during the last 1600 years inferred from speleothem isotope records of the north-eastern Andes foothills in Peru. Clim Past Discuss 10:533–561

    Article  Google Scholar 

  • Arias PA, Fu R, Hoyos CD, Li W, Zhou L (2011) Decadal changes in cloudiness over the Amazon forests: observations and potential causes. Clim Dyn 37(5):1151–1164. doi:10.1007/s00382-010-0903-2

    Article  Google Scholar 

  • Arias PA, Fu R, Mo K (2012) Changes in monsoon regime over northwestern Mexico in recent decades and its potential causes. J Clim 25:4258–4274

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Barlow M, Nigam S, Berbery EH (1998) Evolution of the North American monsoon system. J Clim 11:2238–2257

    Article  Google Scholar 

  • Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata basin in South America. J Hydrometeorol 3:630–645

    Article  Google Scholar 

  • Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of the twentieth-century North Atlantic climate variability. Nature 484:228–232

    Article  Google Scholar 

  • Castro CL, McKee TB, Pielke RA Sr (2001) The relationship of the North American monsoon to tropical and North Pacific Sea surface temperatures as revealed by observational analyses. J Clim 14:4449–4473

    Article  Google Scholar 

  • Castro CL, Pielke RA, Adegoke JO, Schubert SD, Pegion PJ (2007) Investigation of the summer climate of the contiguous United States and Mexico using the regional atmospheric modeling system (RAMS). Part II: model climate variability. J Clim 20:3866–3887

    Article  Google Scholar 

  • Chiessi CM, Mulitza S, Patzold J, Wefer G, Marengo JA (2009) Possible impact of the Atlantic multidecadal oscillation on the South American summer monsoon. Geophys Res Lett 36:L21707. doi:10.1029/2009GL039914

    Article  Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3(6):391–397. doi:10.1038/ngeo868

    Article  Google Scholar 

  • Cook BI, Seager R (2013) The response of the North American monsoon to increased greenhouse gas forcing. J Geophys Res Atmos 118:1690–1699. doi:10.1002/jgrd.50111

    Article  Google Scholar 

  • da Silva GAM, Drumond A, Ambrizzi T (2011) The impact of El Niño on South American summer climate during different phases of the Pacific decadal oscillation. Theor Appl Climatol 106:307–319

    Article  Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the tropics on the Southern annular mode. J Clim 25:6330–6348

    Article  Google Scholar 

  • Douglas AV, Englehart P (2007) A climatological perspective of transient synoptic features during NAME 2004. J Clim 20:1947–1954

    Article  Google Scholar 

  • Douglas MW, Maddox RA, Howard K, Reyes S (1993) The Mexican monsoon. J Clim 6:1665–1677

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Figueroa SN, Nobre C (1990) Precipitation distribution over central and western tropical South America. Climanalise 5:36–44

    Google Scholar 

  • Figueroa SN, Satyamurty P, Silva Dias PLD (1995) Simulations of the summer circulation over the South American region with an Eta coordinate Model. J Atmos Sci 52:1573–1584

    Article  Google Scholar 

  • Forster PM et al. (2011) Stratospheric changes and climate. Scientific assessment of ozone depletion: 2010. Global Ozone research and monitoring project—report no. 52. World meteorological organization, Geneva, Switzerland, 1-60

  • Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S, Fernandes K, Liebmann B, Fisher R, Myneni R (2013) The increase of dry season length over the southern Amazonia in recent decades and its implications for climate projection. Proceed. Natl. Acad. Sci. doi:10.1073/pnas.1302584110

    Google Scholar 

  • Fu R, Arias PA, Wang H (2014) Connection between the North and South American monsoons. In: The monsoons and climate change. Eds. Leila M.V. Carvalho and Charles Jones. Springer Link, in press

  • Geil KL, Serra YL, Zeng X (2014) Assessment of CMIP5 model simulations of the North American monsoon system. J Clim 26:8887–8901

    Google Scholar 

  • Giannini A, Chiang JCH, Cane M, Kushnir Y, Seager R (2001) The ENSO teleconnection to the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J Clim 14:4530–4544

    Article  Google Scholar 

  • Gonzalez M, Vera C, Liebmann B, Marengo J, Kousky V, Allur D (2007) The nature of the rainfall onset over central South America. Atmósfera 20(4):379–396

    Google Scholar 

  • Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events and possible effects of climate change. Stoch Environ Res Risk A 25:537–554. doi:10.1007/s00477-010-0420-1

    Article  Google Scholar 

  • Grimm AM, Ferraz S, Gomez J (1998) Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J Clim 11:2863–2880

    Article  Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate variability in southern South America associated with El Niño and La Niña events. J Clim 13:35–58

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea D, Medina-Elizade M (2006) Global temperature change. Proceed Natl Acad Sci 103(39):14288–14293

    Article  Google Scholar 

  • Higgins RW, Shi W (2000) Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States. J Clim 13:759–776

    Article  Google Scholar 

  • Higgins RW, Janowiak JE, Wang X (1997) Influence of the North American monsoon system on the United States summer precipitation regime. J Clim 10:2600–2622

    Article  Google Scholar 

  • Higgins RW, Mo KC, Yao Y (1998) Interannual variability of the U.S. summer precipitation regime with emphasis on the southwestern monsoon. J Clim 11:2582–2606

    Article  Google Scholar 

  • Higgins RW, Chen Y, Douglas AV (1999) Interannual variability of the North American warm season precipitation regime. J Clim 12:653–680

    Article  Google Scholar 

  • Higgins RW, Shi W, Yarosh E, Joyce R (2000a) Improved United States precipitation quality control system and analysis NCEP/Climate Prediction Center ATLAS No.7, NCEP/NWS/NOAA, 40 pp

  • Higgins RW, Leetmaa A, Xue Y, Barnston A (2000b) Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature. J Clim 13:3994–4017

    Article  Google Scholar 

  • Hu Q, Feng S (2008) Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation. J Clim 21(11):2371–2383

    Article  Google Scholar 

  • Hu Q, Feng S (2010) Influence of the Arctic oscillation on central United States summer rainfall. J Geophys Res 115:D01102. doi:10.1029/2009JD011805

    Google Scholar 

  • Hu YY, Zhou C, Liu JP (2011) Observational evidence for the poleward expansion of the Hadley circulation. Adv Atmos Sci 28:33–44

    Article  Google Scholar 

  • Hu Z-Z, Kumar A, Ren HL, Wang H, L’Heureux M, Jin F-F (2013) Weakened interannual variability in the tropical Pacific Ocean since 2000. J Clim 26(8):2601–2613

    Article  Google Scholar 

  • Jones C, Carvalho LMV (2013) Climate change in the South American monsoon system: present climate and CMIP5 projections. J Clim 26:6660–6678

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP-NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karoly D, Plumb RA, Ting M (1989) Examples of the horizontal propagation of quasi-stationary waves. J Atmos Sci 46:2802–2811

    Article  Google Scholar 

  • Kelly P, Mapes BE (2011) Zonal mean wind, the Indian monsoon, and July drying in the western Atlantic subtropics. J Geophys Res 116:D00Q07. doi:10.1029/2010JD015405

    Google Scholar 

  • Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. doi:10.1029/2012GL052006

    Google Scholar 

  • Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of pacific ocean warming on north atlantic tropical cyclones. Science 325(5936):77–80

    Article  Google Scholar 

  • Krishnamurthy V, Goswami BN (2000) Indian monsoon-ENSO relationship on interdecadal timescale. J Clim 13:579–595

    Article  Google Scholar 

  • Kumar K, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159

    Article  Google Scholar 

  • Kumar K, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115

    Article  Google Scholar 

  • Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of tropical atlantic SST influence on North American hydroclimate variability. J Clim 23:5610–5628

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L13705. doi:10.1029/2005GL022738

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Lee M-I et al (2007) Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J Clim 20:1862–1881

    Article  Google Scholar 

  • Lee EJ, Ha K-J, Jhun J-G (2014) Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents. Clim Dyn 42:2585–2601. doi:10.1007/s00382-013-1762-4

    Article  Google Scholar 

  • Lenters JL, Cook KH (1996) Simulation and diagnosis of the regional South American precipitation climatology. J Clim 8:2988–3005

    Article  Google Scholar 

  • Li W, Fu R (2004) Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF reanalysis. J Clim 17:2637–2651

    Article  Google Scholar 

  • Li W, Fu R (2006) Influence of cold air intrusions on the wet season onset over Amazonia. J Clim 19:257–275

    Article  Google Scholar 

  • Li W, Fu R, Negron-Juarez R, Fernandes K (2008) Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. Proceed R Soc Lond Biol Sci 363(1498):1767–1772

    Google Scholar 

  • Li W, Li L, Fu R, Deng Y, Wang H (2011) Changes to the north atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J Clim 24:1499–1506

    Article  Google Scholar 

  • Li W, Li L, Ting M, Liu Y (2012) Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat Geosci 5:830–834

    Article  Google Scholar 

  • Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570

    Article  Google Scholar 

  • Liebmann B, Kiladis GN, Marengo JA, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12:1877–1891

    Article  Google Scholar 

  • Liebmann B, Kiladis GN, Carvalho LMV, Jones C, Vera CS, Bladé I, Allured D (2009) Origin of convectively coupled kelvin waves over south America. J Clim 22:300–315

    Article  Google Scholar 

  • Lin JL, Mapes BE, Weickmann KM, Kiladis GN, Schubert SD, Suarez MJ, Bacmeister JT, Lee MI (2008) North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs. J Clim 21:2919–2937

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443

    Google Scholar 

  • Marengo JA, Soares W, Saulo W, Nicolini M (2004) Climatology of the LLJ east of the Andes as derived from the NCEP reanalyses. J Clim 17:2261–2280

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogués-Paegle J, Zipser E, Seth A, Alves LM (2010) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21. doi:10.1002/joc2254

    Article  Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceed Natl Acad Sci. 101:4136–4141

    Article  Google Scholar 

  • Mechoso CR, Lyons S, Spahr J (1990) The impact of sea surface temperature anomalies on the rainfall in northeast Brazil. J Clim 3:812–826

    Article  Google Scholar 

  • Meehl GA, Arblaster JM (2003) Mechanisms for projected future changes in south Asian monsoon precipitation. Clim Dyn 21:659–675

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Miyasaka T, Nakamura H (2005) Structure and formation mechanisms of the Northern hemisphere summertime subtropical highs. J Clim 18:5046–5065

    Article  Google Scholar 

  • Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610

    Article  Google Scholar 

  • Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23(13):3639–3656

    Article  Google Scholar 

  • Mo KC, Nogues-Paegle J (2001) The Pacific South American modes and their downstream effects. Int J Climatol 21:1211–1229

    Article  Google Scholar 

  • Moura AD, Shukla EJ (1981) On the dynamics of the droughts in northeast Brazil: observations, theory and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2673

    Article  Google Scholar 

  • Munoz E, Wang C, Enfield D (2010) The intra-americas springtime sea surface temperature anomaly dipole as fingerprint of remote influences. J Clim 23:43–56

    Article  Google Scholar 

  • Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15:1389–1407

    Article  Google Scholar 

  • Pisciottano G, Diaz A, Cazes G, Mechoso CR (1994) El Niño-Southern oscillation impact on rainfall in uruguay. J Clim 7:1286–1302

    Article  Google Scholar 

  • Raia A, Cavalcanti IFA (2008) The life cycle of the South American monsoon system. J Clim 21:6227–6246

    Article  Google Scholar 

  • Reynolds RW (1988) A real-time global sea surface temperature analysis. J Clim 1:75–86

    Article  Google Scholar 

  • Ruiz-Barradas A, Nigam S, Karvada A (2014) The Atlantic Multidecadal Oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-013-1810-0

    Google Scholar 

  • Santer BD et al (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105(6):7337–7356

    Article  Google Scholar 

  • Sarkar S, Singh RP, Kafatos M (2004) Further evidences for the weakening relationship of Indian rainfall and ENSO over India. Geophys Res Lett 31:L13209. doi:10.1029/2004GL020259

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) On the cause of the 1930s dust bowl. Science 303:1855–1859

    Article  Google Scholar 

  • Schubert SD et al (2009) A USCLIVAR project to assess and compare the responses of global climate models to drought related SST forcing patterns: overview and Results. J. Clim 22:5251–5272

    Article  Google Scholar 

  • Seager R, Harnik N, Robinson WA, Kushnir Y, Ting M, Huang HP, Velez J (2005) Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Q J R Meteorol Soc 131:1501–1527

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. Am Stat Assoc J 63:1379–1389

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American monsoon. Clim Change 98:331–357

    Article  Google Scholar 

  • Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation. J Clim 26:7328–7351. doi:10.1175/JCLI-D-12-00726.1

    Article  Google Scholar 

  • Silva VB, Kousky SVE, Shi W, Higgins RW (2007) An improved gridded historical daily precipitation analysis for Brazil. J Hydrometeorol 8:847–861

    Article  Google Scholar 

  • Stensrud DJ, Gall RL, Mullen SL, Howard KW (1995) Model climatology of the Mexican monsoon. J Clim 8:1775–1794

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993

    Article  Google Scholar 

  • Vera CS, Silvestri GE, Barros VR, Carril AF (2004) Differences in El Niño response over the Southern hemisphere. J Clim 17:1741–1753

    Article  Google Scholar 

  • Vera C et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000

    Article  Google Scholar 

  • Vera C, Goswami BN, Gutowski W, Hendon H, Hewitson B, Jones C, Lionello P, Marengo JA, Mechoso R, Reason C, Thorncroft CD (2013) Understanding and predicting climate variability and change at regional scales. In: Asrar GR, Hurrell JW (eds) Climate science for serving society: research, modeling and prediction priorities. Springer, Berlin, pp 273–306

    Chapter  Google Scholar 

  • Wang H, Fu R (2002) Cross-equatorial flow and seasonal cycle of precipitation over South America. J Clim 15:1591–1608

    Article  Google Scholar 

  • Wang C, Lee SK, Enfield DB (2007) Impact of the Atlantic warm pool on the summer climate of the western hemisphere. J Clim 20:5021–5040

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature. doi:10.1038/nature08316

    Google Scholar 

  • Yeh S-W, Ham J-G, J-Y Lee B (2012) Changes in the tropical Pacific SST trend from CMP3 to CMP5 and its implication of ENSO. J Clim 25(21):7764–7771

    Article  Google Scholar 

  • Yin L, Fu R, Zhang Y-F, Arias PA, Fernando DN, Li W, Fernandes K, Bowerman AR (2014) What controls the interannual variation of the wet season onsets over the Amazon? J Geophys Res Atmos 119:2314–2328. doi:10.1002/2013JD021349

    Article  Google Scholar 

  • Zhang R (2007) Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys Res Lett. doi:10.1029/2007GL030225

    Google Scholar 

  • Zhou J, Lau K-M (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

  • Zhu C, Cavazos T, Lettenmaier DP (2007) Role of antecedent land surface conditions in warm season precipitation over northwestern Mexico. J Clim 20:1774–1791

    Article  Google Scholar 

Download references

Acknowledgments

PA was supported by “Comisión Nacional de Investigación Científica y Tecnológica de Chile” grant FONDECYT #3140570 and Program "Estrategia de Sostenibilidad 2014–2015" at Universidad de Antioquia. RF was supported by the National Science Foundation grant (AGS-0937400) and the NOAA Climate Program Office Climate Prediction Program for the Americas (CPPA) Grant (NA10OAR4310157). CV acknowledges support from CONICET/PIP 112-20120100626CO and UBACyT 20020130100489BA. MR acknowledges support from FONDAP-CONICYT n. 15110009 and NC120066. PA and MR are part of the Center for Climate and Resilience Research (CR2), Center of Excellence FONDAP-CONICYT n. 15110009, Chile. We acknowledge the insightful comments from two anonymous reviewers and the editor. Finally, we thank Vincent Combes for his help with Fig. 14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola A. Arias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, P.A., Fu, R., Vera, C. et al. A correlated shortening of the North and South American monsoon seasons in the past few decades. Clim Dyn 45, 3183–3203 (2015). https://doi.org/10.1007/s00382-015-2533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2533-1

Keywords

Navigation