Skip to main content
Log in

Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echolocation, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sensory hairs that cover the entire body and enlarged somatosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggesting that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that manatees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FSC:

Follicle-sinus complex

F:

Frequency (Hz)

References

  • Bachteler D, Dehnhardt G (1999) Active touch performance in the Antillean manatee: evidence for a functional differentiation of facial tactile hairs. Zool 102:61–69

    Google Scholar 

  • Barth FG (2014) The slightest whiff of air: airflow sensing in arthropods. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water. Springer, Heidelberg, pp 169–196

    Chapter  Google Scholar 

  • Bauer GB, Gaspard JC III, Colbert DE, Leach JB, Stamper SA, Mann DA, Reep RL (2012) Tactile discrimination of textures by Florida manatees (Trichechus manatus latirostris). Mar Mammal Sci 28:E456–471

    Article  Google Scholar 

  • Bauer GB, Colbert DE, Gaspard JC, Littlefield B, Fellner W (2003) Underwater visual acuity of Florida manatees (Trichechus manatus latirostris). Int J Comp Psych 16:130–142

    Google Scholar 

  • Bell CC (1982) Properties of a modifiable efference copy in an electric fish. J Neurophysiol 47:1043–1056

    CAS  PubMed  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Prog Zool 41:1–115

    Google Scholar 

  • Bleckmann H, Mogdans J, Dehnhardt G (2001) Lateral line research: the importance of using natural stimuli in studies of sensory systems. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, pp 149–167

    Chapter  Google Scholar 

  • Bryden MM, Marsh H, MacDonald BW (1978) The skin and hair of the dugong, Dugong dugon. J Anat 126:637–638

    Google Scholar 

  • Budelmann BU (1989) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line, neurobiology and evolution. Springer, New York, pp 607–632

    Chapter  Google Scholar 

  • Campenhausen CV, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374

    Article  Google Scholar 

  • Colbert D, Fellner W, Bauer GB, Manire CA, Rhinehart HL (2001) Husbandry and research training of two Florida manatees (Trichechus manatus latirostris). Aquat Mamm 27:16–23

    Google Scholar 

  • Colbert DE, Gaspard JC, Reep R, Mann DA, Bauer GB (2009) Four–choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris. J Exp Biol 12:2105–2122

    Article  Google Scholar 

  • Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190:109–129

    CAS  PubMed  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 319–362

    Chapter  Google Scholar 

  • Coombs S, New JG, Nelson M (2002) Information–processing demands in electrosensory and mechanosensory lateral line systems. J Physiol Paris 96:341–354

    Article  PubMed  Google Scholar 

  • Cornsweet TN (1962) The staircase method in psychophysics. Am J Psychol 75:485–491

    Article  CAS  PubMed  Google Scholar 

  • Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W (2012) Electroreception in the Guiana dolphin (Sotalia guianensis). Proc R Soc B 279:663–668

    Article  PubMed  Google Scholar 

  • Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A 175:791–800

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Dücker G (1996) Tactile discrimination of size and shape by a California sea lion (Zalophus californianus). Ani Learn Beh 24:366–374

    Article  Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbor seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236

    Article  CAS  Google Scholar 

  • Dehnhardt G, Hyvarinen H, Palviainen A, Klauer G (1999) Structure and innervation of the vibrissal follicle–sinus complex in the Australian water rat, Hydromys chrysogaster. J Comp Neurol 411:550–562

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail–following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • Dosch F (1915) (translated by Sinclair DA) Structure and development of the integument of Sirenia. Tech Trans No 1626. National Research Council of Canada, Ottawa, 1973. (Bau und entwicklung des integuments der Sirenen. Jenaische Zeitschrift 53:805–854, 1914–1915)

    Google Scholar 

  • Fay FH (1982) Ecology and biology of the Pacific walrus, Odobenus rosmarus divergens. USFWS, North American Fauna 74, Washington, DC

    Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Olsho LW (1979) Discharge patterns of lagenar and saccular neurons of the goldfish eighth nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol 62:377–386

    Article  Google Scholar 

  • Fay RR, Edds–Walton PL, Highstein SM (1994) Directional sensitivity of saccular afferents of the toadfish to linear acceleration at audio frequencies. Biol Bull 187:258–259

    Article  CAS  PubMed  Google Scholar 

  • Gaspard JC III, Bauer GB, Reep RL, Dziuk K, Read L, Mann DA (2013) Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris). J Comp Physiol A 199:441–450

    Article  Google Scholar 

  • Gaspard JC, Bauer GB, Reep RL, Dziuk K, Cardwell A, Read L, Mann DA (2012) Audiogram and auditory critical ratios of two Florida manatees (Trichechus manatus latirostris). J Exp Biol 215:1442–1447

    Article  PubMed  Google Scholar 

  • Gerstein ER, Gerstein L, Forsythe S, Blue J (1999) Underwater audiogram of a West Indian manatee (Trichechus manatus). J Acoust Soc Amer 105:3575–3583

    Article  CAS  Google Scholar 

  • Ginter C, Fish F, Marshall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mammal Sci 26:733–743

    Google Scholar 

  • Glaser N, Wieskotten S, Otter C, Dehnhardt G, Hanke W (2011) Hydrodynamic trail following in a California sea lion (Zalophus californianus). J Comp Physiol A 197:141–151

    Article  Google Scholar 

  • Hanke W, Wieskotten S, Kruger Y, Glaser N, Marshall CD, Dehnhardt G (2013) Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A 199:421–440

    Article  Google Scholar 

  • Hartman DS (1979) Ecology and behavior of the manatee (Trichechus manatus). Am Soc Mam Spec Pub 5:1–153

    Google Scholar 

  • Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol A 159:701–710

    Article  CAS  PubMed  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line, neurobiology and evolution. Springer, New York, pp 217–227

    Chapter  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamics and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  • Kamiya T, Yamasaki F (1981) A morphological note on the sinus hair of the dugong. In: Marsh H (ed) The dugong. Dept. of Zoology. James Cook University of North Queensland, Australia, pp 111–113

    Google Scholar 

  • Kastelein RA, Van Gaalen MA (1988) The tactile sensitivity of the mystacial vibrissae of a Pacific walrus (Odobenus rosmarus divergens). Part 1. Aquat Mamm 14:123–133

    Google Scholar 

  • Layne JN, Caldwell DK (1964) Behavior of the Amazon dolphin, Inia geoffrensis (Blainville), in captivity. Zool 49:81–108

    Google Scholar 

  • Leitch DB, Catania KC (2012) Structure, innervation and response properties of integumentary sensory organs in crocodilians. J Exp Biol 214:4217–4230

    Article  Google Scholar 

  • Levin MJ, Pfieffer CJ (2002) Gross and microscopic observations on the lingual structure of the Florida manatee Trichechus manatus latirostris. Anat Histol Embryol 31:278–285

    Article  CAS  PubMed  Google Scholar 

  • Ling JK (1977) Vibrissae of marine mammals. In: Harrison JB (ed) Functional anatomy of marine mammals, vol 3. Academic Press, London, pp 387–415

    Google Scholar 

  • Mackay–Sim A, Duvall D, Graves BM (1985) The West Indian manatee, Trichechus manatus, lacks a vomeronasal organ. Brain Behav Evol 27:186–194

    Article  PubMed  Google Scholar 

  • Mann D, Colbert DE, Gaspard JC, Casper B, Cook MLH, Reep RL, Bauer GB (2005) Temporal resolution of the Florida manatee (Trichechus manatus latirostris) auditory system. J Comp Physiol 191:903–908

    Article  Google Scholar 

  • Marshall CD, Reep RL (1995) Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris. Brain Behav Evol 45:1–18

    Article  CAS  PubMed  Google Scholar 

  • Marshall CD, Huth GD, Edmonds VM, Halin DL, Reep RL (1998) Prehensile use of perioral bristles during feeding and associated behaviors of the Florida manatee (Trichechus manatus latirostris). Mar Mammal Sci 14:274–289

    Article  Google Scholar 

  • Marshall CD, Amin H, Kovacs KM, Lydersen C (2006) Microstructure and innervation of the mystacial vibrissal follicle–sinus complex in bearded seals, Erignathus barbatus (Pinnipedia: Phocidae). Anat Rec 288A:13–25

    Article  Google Scholar 

  • Mass AM, Ketten DR, Odell DK, Supin AY (2012) Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris. Anat Rec 295:177–186

    Article  Google Scholar 

  • Mercado E III (2014) Tubercles: what sense is there? Aquat Mamm 40:95–103

    Article  Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Mü nz H (eds) The mechanosensory lateral line, neurobiology and evolution. Springer, New York, pp 17–78

    Chapter  Google Scholar 

  • Pruszynski JA, Johansson RS (2014) Edge–orientation processing in first–order tactile neurons. Nature Neurosci 17:1404–1409

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Johnson JI, Switzer RC, Welker WI (1989) Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. Brain Behav Evol 34:365–386

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML, Whitaker DM (1998) Distribution and innervation of facial bristles and hairs in the Florida manatee (Trichechus manatus latirostris). Marine Mammal Sci 14:257–273

    Article  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML, Homer BL, Samuelson DA (2001) Microanatomy of perioral bristles in the Florida manatee, Trichechus manatus latirostris. Brain Behav Evol 58:1–14

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML (2002) Tactile hairs on the postcranial body in Florida manatees: a mammalian lateral line? Brain Behav Evol 59:141–154

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JE III (1979) The semisocial manatee. Nat Hist 88:44–53

    Google Scholar 

  • Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the innervation of the mystacial pad. I. Vibrissal follicles. J Comp Neurol 252:154–174

    Article  CAS  PubMed  Google Scholar 

  • Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385:149–184

    Article  CAS  PubMed  Google Scholar 

  • Sarko DK, Reep RL (2007) Somatosensory areas of manatee cerebral cortex: histochemical characterization and functional implications. Brain Behav Evol 69:20–36

    Article  CAS  PubMed  Google Scholar 

  • Sarko DK, Johnson JI, Switzer RC, Welker WI, Reep RL (2007a) Somatosensory nuclei of the brainstem and thalamus in Florida manatees. Anat Rec 290:1138–1165

  • Sarko DK, Rice FL, Reep RL, Mazurkiewicz JE (2007b) Adaptations in the structure and innervation of follicle–sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris). J Comp Neurol 504:217–237

  • Schulte–Pelkum N, Wieskotten S, Hanke W, Dehnhardt G, Mauck B (2007) Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 210:781–787

    Article  PubMed  Google Scholar 

  • Slone DH, Reid JP, Kenworthy WJ, diCarlo G, Butler SM (2012) Manatees mapping seagrass. Seagrass Watch 46:8–11

    Google Scholar 

  • Sokolov VE (1986) Manatee—morphological description. Nauka Press, Moscow (Russian)

    Google Scholar 

  • Sterbing–D’Angelo SJ, Moss CF (2014) Air flow sensing in bats. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water. Springer, Heidelberg, pp 197–213

    Chapter  Google Scholar 

  • Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol A 164:655–662

    Article  Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani. J Comp Physiol A 143:375–382

    Article  Google Scholar 

  • Windsor SP (2014) Hydrodynamic imaging by blind Mexican cavefish. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water. Springer, Heidelberg, pp 103–125

    Chapter  Google Scholar 

  • Woollard P, Vestjens WJM, MacLean L (1978) Ecology of eastern water rat Hydromys chrysogaster at Griffith, NSW food and feeding habits. Austr Wild Res 5:59–73

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the support of Mote Marine Laboratory in providing the animals and facilities for this project. Thanks to the many volunteers from Mote Marine Laboratory and students from New College of Florida that assisted on this project. We gratefully acknowledge Guido Dehnhardt and Wolf Hanke for their expertise and equipment loan during training, as well as Ronnie and John Enander, the Thurell family, and New College Foundation. Yareli Alvarez and Madi Huffstickler provided assistance in the preparation of the manuscript. This work was conducted under US Fish and Wildlife Service Permit MA837923. It was supported by the National Science Foundation (IOS-0920022/0919975/0920117). All experimental procedures were approved by the Mote Marine Laboratory IACUC prior to implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon B. Bauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaspard, J.C., Bauer, G.B., Mann, D.A. et al. Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris). J Comp Physiol A 203, 111–120 (2017). https://doi.org/10.1007/s00359-016-1142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-016-1142-8

Keywords

Navigation