Skip to main content
Log in

Concealable strain sensing method for art preservation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel method to measure strain without mediation of stress has been developed to assess relative displacements in art objects responding to environmental fluctuations. The method uses a chip with a variable resistor composed of a Giant Magnetic Resistance (GMR) material. In a case study, the dimensional changes of wooden test vehicles subjected to sudden humidity changes at constant temperature inside a controlled environmental chamber were measured. Furthermore, an optimized sensor deployment and converging algorithm to increase the accuracy of the measurements was developed and applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zheng, R.Gr. Maev, I.Y. Solodov, Can. J. Phys. 77, 927–967 (2000)

    Article  ADS  Google Scholar 

  2. C.J. Gilbert, V. Schroeder, R.O. Ritchie, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 30, 1739–1753 (1999), and references therein

    Article  ADS  Google Scholar 

  3. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1994)

    Article  Google Scholar 

  4. J.P. Lynch, K.J. Loh, Shock Vib. Dig. 38, 927–967 (2006), and references therein

    Article  Google Scholar 

  5. A. Etebari, Recent Patents on Mechanical Engineering 1, 22–28 (2008)

  6. S.A. Wilson, R.P.-J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Q.U. Wahab, M. Willander, S.M. Al-hilli, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. van der Wijngaart, E.W.H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, K. Persson, Mater. Sci. Eng., R Rep. 56, 1–129 (2007)

    Article  Google Scholar 

  7. HC Materials Corporation, http://www.hcmat.com/Pmn_Products.html

  8. D.E. Kretschmann, Mechanical properties of wood, in The Encyclopedia of Wood (US Department of Agriculture, Washington, 1999), Chap. 5

    Google Scholar 

  9. Dynasen’s Strain Gauges, www.dynasen.com

  10. Microstrain, Displacement transducers—subminiature DVRT®. http://www.microstrain.com

  11. L. Uziellieb, The deformation kit: a method and apparatus for monitoring the deformation of wooden panels. J. Cult. Heritage (2012). doi:10.1016/j.culher.2012.03.001

    Google Scholar 

  12. S. Le Conte, in Survey of Non-destructive Techniques Applicable to Conservation of Wooden Cultural Heritage: A Data Base, Wood Science for the Conservation of Cultural Heritage, COST Action IE0601 (2012)

    Google Scholar 

  13. R. Koslowzki, Climate-induced damage of wood: numerical modeling and direct tracing, in Proceedings of Experts’ Roundtable on Sustainable Climate Management Strategies, ed. by F. Boersma, Tenerife, Spain (Getty Conservation Institute, Los, Angeles, 2007). www.getty.edu/conservation/science/climate/climate_expertsroundtable.html

    Google Scholar 

  14. J. Gril, J. Colmars, P. Mazzanti, Time-dependent mechanical behavior of wood and implication for painted panels, in Proc. of Joint Meeting of Cost Actions IE0601 ‘Wood Science for Cultural Heritage’ and FP0802 ‘Experimental and Computational Micro-Characterisation Techniques in Wood Mechanics’, Pologne (2010)

    Google Scholar 

  15. M.F. Mecklenburg, C.S. Tumosa, D. Erhardt, Structural response of painted wood surfaces to changes in ambient relative humidity, in Painted Wood: History and Conservation, ed. by V. Dorge, F.C. Howlett (The Getty Conservation Institute, Los Angeles, 1998), pp. 464–483

    Google Scholar 

  16. S. Michalski, The ideal climate, risk management, the ASHRAE chapter, proofed fluctuations, and towards a full risk analysis model, in Proceedings of Experts, Roundtable on Sustainable Climate Management Strategies, Tenerife, Spain (Getty Conservation Institute, Los Angeles, 2007). www.getty.edu/conservation/science/climate/climate_expertsroundtable.html

    Google Scholar 

  17. L. Bratasz, D. Camuffo, R. Kozlowski, Target microclimate for preservation derived from past indoor conditions, in Museum Microclimates, ed. by T. Padfield, K. Borchersen (National Museum of Denmark, Copenhagen, 2007)

    Google Scholar 

  18. D. Erhardt, C.S. Tumosa, M.F. Mecklenburg, Applying science to the question of museum climate, in Museum Microclimates, ed. by T. Padfield, K. Borchersen (National Museum of Denmark, Copenhagen, 2007)

    Google Scholar 

  19. E.N. Landis, Acoustic emission in wood, in Acoustic Emission Testing Basis for Research-Applications in Civil Engineering, ed. by C.U. Grosse, M. Ohtsu (Springer, Heidelberg, 2008), pp. 311–322

    Google Scholar 

  20. A. Niemz, J. Brunner, O. Walter, in Proc. of the 8th World Congress on Computational Mechanics (WCCM8), 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy, 30 June–5 July (2008)

    Google Scholar 

  21. NVE Corporation, AA (NVE AAL002-02) and AB-series analog sensors in www.gmrsensors.com

  22. www.technologyreview.com/computing/40254/page2/4/27/2012

  23. B. Pretzel, Comparing risks to museum artifacts from indoor climates, in Proc. of the 10th International Conference on Non-destructive Investigations and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage, Florence, Italy, 13th April–15th April (2011)

    Google Scholar 

  24. L.M. Rodríguez Peralta, L.M.P. Leão Brito, B.A. Teixeira Gouveia, in Sensor Network on Building Monitoring from Theory to Real Application. EJSE Special Issue (2009), pp. 46–59

    Google Scholar 

  25. M. Łukomski, J. Czop, M. Strojecki, Ł. Bratasz, Acoustic emission monitoring: on the path to rational strategies for collection care, in Climate for Collections Standards and Uncertainties, ed. by J. Ashley-Smith, A. Burmester, M. Eibl (Doerner Institut, Munich, 2013), p. 69

    Google Scholar 

  26. Ł. Bratasz, Allowable microclimatic variations in museums and historic buildings: reviewing the guidelines, in Climate for Collections Standards and Uncertainties, ed. by J. Ashley-Smith, A. Burmester, M. Eibl (Doerner Institut, Munich, 2013), p. 11

    Google Scholar 

  27. J. Henderson, S. Dai, Towards a common understanding of standards? in Climate for Collections Standards and Uncertainties, ed. by J. Ashley-Smith, A. Burmester, M. Eibl (Doerner Institut, Munich, 2013), p. 21

    Google Scholar 

  28. J.S. Johnsen, Conservation of cultural heritage—European standards on the environment, in Climate for Collections Standards and Uncertainties, ed. by J. Ashley-Smith, A. Burmester, M. Eibl (Doerner Institut, Munich, 2013), p. 35

    Google Scholar 

Download references

Acknowledgements

The authors will like to thank Michael Gaynes for technical assistance with the temperature–humidity chamber, and also Marco Leona, Paolo Dionisi Vici, Masahiko Tsukada and Lucretia Kargere for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Schrott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, J., Klein, L.J., Bermudez Rodriguez, S.A. et al. Concealable strain sensing method for art preservation. Appl. Phys. A 115, 829–836 (2014). https://doi.org/10.1007/s00339-013-7871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7871-4

Keywords

Navigation