Skip to main content
Log in

MASMICRO micro-/nano-materials processing, analysis, inspection and materials knowledge management

  • SPECIAL ISSUE - ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The main goals of the ‘Material Innovation and Testing’ within MASMICRO are the identification of the miniature/micro-materials which are formable, development of new materials for forming and machining, development of an integrated material-testing system and study of material properties for design/analysis applications. Examples of collaborative work and results are presented regarding the processing of functional electrospun polymer micro-/nano-fibre structures and the characterization of their interface properties with tribological testing. By means of optical coherence tomography, a non-destructive inspection approach for these micro-/nano-structured webs was developed and it is also documented in the paper. Further, an application example of artificial neural networks (ANNs) is given, concerning the modelling of nano-fibres material behaviour under tensile testing. It is shown how artificial intelligence approaches (knowledge-based systems—KBS and ANNs) can support, significantly, the representation and processing of materials’ knowledge of both, symbolic type, in the case of KBS, and algorithmic type, in the case of ANNs, for the cases dealt within the MASMICRO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenot A, Chronakis IS (2003) Polymer nanofibres assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75. doi:10.1016/S1359-0294(03)00004-9

    Article  Google Scholar 

  2. Li D, Xia Y (2004) Electrospinning of nanofibres: reinventing the wheel? Adv Mater 16:1151–1170. doi:10.1002/adma.200400719

    Article  Google Scholar 

  3. Dzenis Y (2004) Spinning continuous fibres for nanotechnology. Science 304:1917–1919. doi:10.1126/science.1099074

    Article  Google Scholar 

  4. Reneker DH, Yarin AL, Fong H, Koombhonge S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547. doi:10.1063/1.373532

    Article  Google Scholar 

  5. Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH (2005) Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polymers Adv Technol 16:276–282. doi:10.1002/pat.568

    Article  Google Scholar 

  6. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106. doi:10.1088/0957-4484/17/14/R01

    Article  Google Scholar 

  7. Huang D, Swanson EA, Lin CP, Schuhman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181. doi:10.1126/science.1957169

    Article  Google Scholar 

  8. Stifter D (2007) Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Appl Phys B 88:337–357. doi:10.1007/s00340-007-2743-2

    Article  Google Scholar 

  9. Frost A (1987) Introduction to knowledge base systems. Collins, UK

    Google Scholar 

  10. Kerr R (1991) Knowledge-based manufacturing management. Addison-Wesley, Sydney

    Google Scholar 

  11. Meyer W (1990) Expert systems in factory management—knowledge-based CIM. Horwood, UK

    Google Scholar 

  12. Hagan MT, Demuth HB, Beale M (1995) Neural network design. Publishing, Boston, USA

    Google Scholar 

  13. Swingler K (1996) Applying neural networks. Academic, London, UK

    Google Scholar 

  14. Jirsak O, Sanetrnik F, Lukas D, Kotek V (2005) A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. WO2005/024101A1

  15. Wiesauer K, Pircher M, Götzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger CK, Stifter D (2005) En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Opt Express 13:1015–1024. doi:10.1364/OPEX.13.001015

    Article  Google Scholar 

  16. Jaeger R, Bergschoof M, Martini I, Batle C, Schonherr H, Vansco GJ (1998) Electrospinning of ultra-thin polymer fibres. Macromol Symp 127:141–150

    Google Scholar 

  17. Chronakis IS, Jakob A, Hagström B, Ye L (2006) Encapsulation and selective recognition of molecularly imprinted theophylline and 17beta-estradiol nanoparticles within electrospun polymer nanofibres. Langmuir 22:8960–8965. doi:10.1021/la0613880

    Article  Google Scholar 

  18. Sundaray B, Subramanian V, Natarajan TS, Xiang R-Z, Chang C-C, Fann W-S (2004) Electrospinning of continuous aligned polymer fibres App. Phys Lett 84:1222–1224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis S. Chronakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chronakis, I.S., Mekras, N.D., Wiesauer, K. et al. MASMICRO micro-/nano-materials processing, analysis, inspection and materials knowledge management. Int J Adv Manuf Technol 47, 963–971 (2010). https://doi.org/10.1007/s00170-009-2126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2126-4

Keywords

Navigation