Skip to main content
Log in

Segregation distortion in Lolium: evidence for genetic effects

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Segregation distortion (SD) is the deviation of genetic segregation ratios from their expected Mendelian fraction and is a common phenomenon found in most genetic mapping studies. In this study two segregating Lolium perenne populations were used to construct two genetic maps: an ‘F2 biomass’ consisting of 360 genotypes and an ‘F1 late flowering’ sibling based population consisting of 182 genotypes. Additionally two parental maps were generated for the ‘F1 late flowering’ population. SD was detected and p-values for SD were calculated for each marker locus. The ‘F1 late flowering’ map had only half of the extent of SD (32%) compared to the map based on the ‘F2 biomass’ population (63%). Molecular marker data have been supplemented with genomic in situ hybridization (GISH) data to show non major non-recombined segments of Fescue chromosomes within the parental inbred ryegrass lines with a Festuca × Lolium pedigree. We conclude that SD in our study is more likely caused by genetic effects rather than by population structure and marker types. Two new L. perenne mapping populations including their genetic maps are introduced; one of them is the largest reported Lolium mapping population consisting of 360 individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armstead IP, Turner LB, King IP, Cairns AJ, Humphreys MO (2002) Comparison and integration of genetic maps generated from F2 and BC1-type mapping populations in perennial ryegrass. Plant Breed 21:501–507

    Article  Google Scholar 

  • Armstead IP, Turner LB, Farrell M, Skøt L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    Article  PubMed  CAS  Google Scholar 

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452

    Article  CAS  Google Scholar 

  • Canter PH, Pasakinskiene I, Jones RN, Humphreys MW (1999) Chromosome substitutions and recombination in the amphiploid Lolium perenne × Festuca pratensis cv Prior (2n = 4x = 28). Theor Appl Genet 98:809–814

    Article  Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100(2):232–241

    Article  CAS  Google Scholar 

  • Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867

    PubMed  CAS  Google Scholar 

  • Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC, Foster JW (2006) Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 276:101–112

    Article  PubMed  CAS  Google Scholar 

  • Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Foster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:364–380

    Article  PubMed  CAS  Google Scholar 

  • Connolly V, Wright-Turner R (1984) Induction of cytoplasmic male-sterility into ryegrass (Lolium perenne). Theor Appl Genet 68:449–453

    Article  Google Scholar 

  • De Martino T, Errico A, Lassandro A, Conicella C (2000) Distorted segregation resulting from pea chromosome reconstruction with alien segments from Pisum fulvum. J Hered 91(4):322–325

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:992–993

    Article  Google Scholar 

  • Gill GP, Wilcox DJ, Whittaker DJ, Winz RA, Bickerstaff P, Echt CE, Kent J, Humphreys MO, Elborough KM, Gardner RC (2006) A framework linkage map of perennial ryegrass based on SSR markers. Genome 49:354–364

    Article  PubMed  CAS  Google Scholar 

  • Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    PubMed  CAS  Google Scholar 

  • Grini PE, Schnittger A, Schwarz H, Zimmermann I, Schwab B, Juergens G, Huelskamp M (1999) Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics 151:849–863

    PubMed  CAS  Google Scholar 

  • Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular markers data on the construction of linkage maps. Heredity 90:33–38

    Article  PubMed  CAS  Google Scholar 

  • Harbord RM, Napoli CA, Robbins TP (2000) Segregation distortion of T_DNA markers linked to the self-incompatibility (S) locus in Petunia hybrida. Genetics 154:1323–1333

    PubMed  CAS  Google Scholar 

  • Hartl DL (1980) Genetic dissection of segregation distortion. III. Unequal recovery of reciprocal recombinants. Genetics 96:685–696

    PubMed  CAS  Google Scholar 

  • Humphreys MW, Pasakinskiene I, James AR, Thomas H (1998) Physically mapping quantitative traits for stress-resistance in the forage grasses. J Exp Bot 49(327):1611–1618

    Article  CAS  Google Scholar 

  • Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skøt L (2005) A changing climate for grassland research. New Phytol 169(1):9–26

    Article  Google Scholar 

  • Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two interspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691

    Article  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T (2005a) QTL mapping of vernalisation response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  PubMed  CAS  Google Scholar 

  • Jensen LB, Muylle H, Arsen P, Andersen CH, Holm PB, Ghesquiere M, Julier B, Lübberstedt T, Nielsen K, de Riek J, Róldan-Ruiz I, Roulund N, Taylor C, Vosman B, Barre P (2005b) Development and mapping of a public references set of SSR markers in Lolium perenne L. Mol Ecol Notes 5(4):951–958

    Article  CAS  Google Scholar 

  • Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Foster JW (2002a) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Foster JW (2002b) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationship with other Poaceae genomes. Genome 45:282–295

    Article  PubMed  CAS  Google Scholar 

  • Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Sci 41:1565–1572

    CAS  Google Scholar 

  • Lauvergeat V, Barre P, Bonnet M, Ghesquière M (2005) Primer note. Sixty simple sequence repeats (SSR) markers for use in the Festuca/Lolium complex of grasses. Mol Ecol Notes 5(2):401–405

    Article  CAS  Google Scholar 

  • Lorieux M, Goffinet B, Perrier X, Gonzalez de Leon D, Lanaud C (1995) Maximum-likelihood models for mapping genetic-markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80

    Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distortion. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • McLean JR, Merrill CJ, Powers PA, Ganetzky B (1994) Functional identification of the segregation distorter locus of Drosophila melanogaster by germline transformation. Genetics 137(1):201–209

    PubMed  CAS  Google Scholar 

  • Muylle H, De Loose M, Peerbolte R, Van Bockstaele E, Roldán-Ruiz I (2001) Linkage map construction in the outcrossing species Lolium perenne. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66((3b)):401–408

    PubMed  CAS  Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Harrison G, Heslop-Harrison JS (1997) Wheat-rye chromosome translocation involving small terminal and intercalary rye chromosome segments in the Portuguese wheat landrace Barbela. Heredity 78:539–546

    Article  Google Scholar 

  • Sano Y (1990) The genic nature of gamete eliminator in rice. Genetics 125:183–191

    PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Springer, New York, pp 35–121

    Google Scholar 

  • Sibov ST, Garcia AAF, Silva AR, Garcia AF, Mangolin CA, Benchimol LL, De Souza AP (2003) Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas 139:96–106

    Article  PubMed  Google Scholar 

  • Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18(2):74–82

    Article  PubMed  CAS  Google Scholar 

  • Studer B, Asp T, Frei U, Hentrup S, Meally H, Guillard A, Barth S, Muylle H, Roldán-Ruiz I, Barre P, Koning-Boucoiran C, Uenk-Stunnenberg G, Dolstra O, Skøt L, Skøt KP, Turner LB, Humphreys MO, Kölliker R, Roulund N, Nielsen KK, Lübberstedt T (2007) Expressed Sequence Tag-derived microsatellite markers of perennial ryegrass (Lolium perenne L.) Mol Breed. doi 10.1007/s11032-007-9148-0

  • Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35

    Article  PubMed  CAS  Google Scholar 

  • Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88:385–390

    Article  PubMed  CAS  Google Scholar 

  • Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363

    Article  PubMed  CAS  Google Scholar 

  • Turner LB, Cairns AJ, Armstead IP, Ashton J, Skøt K, Whittaker D, Humphreys MO (2006) Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne) with quantitative trait locus mapping. New Phytol 169:45–58

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Vorrips RE (2001) Join Map® 3.1, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Warnke SE, Barker RE, Jung G, Sim S-C, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of annual x perennial ryegrass population. Theor Appl Genet 109:294–304

    Article  PubMed  CAS  Google Scholar 

  • Weide R, van Wordragen MF, Lankhorst RK, Verkerk R, Hanhart C, Liharska T, Pap E, Stam P, Zabel P, Koornneef M (1993) Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics 135:1175–1186

    PubMed  CAS  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid and recombinant inbred population in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147(3):355–358

    Article  Google Scholar 

Download references

Acknowledgments

UCMA was financed under a Teagasc Walsh Fellowship. We acknowledge the National Development Plan for financial contributions. We are grateful for the help of Ms. Kim Tögemann, Ms. Evelyn Fricke, Ms. Maryline Vernet and Ms. Rosanna Hennessy in DNA extractions and genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barth.

Additional information

Communicated by T. Lübberstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (DOC 92 kb)

MOESM2 [INSERT CAPTION HERE] (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anhalt, U.C.M., (J. S.) Heslop-Harrison, P., Byrne, S. et al. Segregation distortion in Lolium: evidence for genetic effects. Theor Appl Genet 117, 297–306 (2008). https://doi.org/10.1007/s00122-008-0774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0774-7

Keywords

Navigation