Skip to main content
Log in

The calculus of reflections and the order relation in hyperbolic geometry

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

It is well known that the calculus of reflections (developed by Hjelmslev, Bachmann et al.) enables the derivation of a large part of Euclidean and non-Euclidean geometry without using assumptions about order and continuity. We show in this article that the calculus of reflections can conversely be used to introduce a relation of order in hyperbolic geometry. Our investigations are based on the famous ‘Endenrechnung’ of Hilbert which was formulated purely in terms of the calculus of reflections by F. Bachmann. We then discuss some implications of these results and show that the calculus of reflections enables (1) the introduction of an order relation in a Pappian projective line and (2) to define an axiom system for hyperbolic planes which seems to be as simple as the famous axiom system of Menger who only used the notion of point-line incidence to axiomatize plane hyperbolic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachmann F.: Eine Kennzeichnung der Gruppe der gebrochen-linearen Transformationen. Math. Ann. 126, 79–92 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachmann F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Heidelberg (1973)

    Book  MATH  Google Scholar 

  3. Bergau, P.: Begründung der hyperbolischen Geometrie aus dem Spiegelungsbegriff, Diss.Kiel (1953)

  4. Hartshorne R.: Geometry: Euclid and Beyond. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Hilbert, D.: Grundlagen der Geometrie. Teubner, Leipzig (1899) [translated by L. Unger, Open Court, La Salle, Ill., under the title: Foundations of Geometry. (1971)]

  6. Hilbert D.: Neue Begründung der Bolyai-Lobatschefskyschen Geometrie. Math. Ann. 57, 137–150 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hjelmslev J.: Neue Begründung der ebenen Geometrie. Math. Ann. 64, 449–474 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hjelmslev, J.: Einleitung in die allgemeine Kongruenzlehre. Danske Vid. Selsk., mat-fys. Medd. 8, Nr. 11 (1929); 10, Nr. 1 (1929); 19, Nr. 12 (1942); 22, Nr. 6, Nr. 13 (1945); 25, Nr.10 (1949)

  9. Karzel H., Kroll H.-J.: Geschichte der Geometrie seit Hilbert. Wissenschaftliche Buchgesellschaft, Darmstadt (1988)

    MATH  Google Scholar 

  10. Klingenberg W.: Eine Begründung der ebenen hyperbolischen Geometrie. Math. Ann. 127, 340–356 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lenz H.: Vorlesungen über projektive Geometrie. Akademische Verlagsgesellschaft, Leipzig (1965)

    MATH  Google Scholar 

  12. Lingenberg R.: Zur Kennzeichnung der Gruppe der gebrochen-linearen Transformationen über einem Körper von Charakteristik ≠  2. Arch. Math. 10, 344–347 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Menger K.: A new foundation of non-Euclidean, affine, real projective and Euclidean geometry. Proc. Natl. Acad. Sci. USA 24, 486–490 (1938)

    Article  Google Scholar 

  14. Menger K.: The new foundation of hyperbolic geometry. In: Butcher, J.C. (eds.) Spectrum of Mathematics, pp. 86–97. Auckland University Press, Auckland (1971)

    Google Scholar 

  15. Pambuccian V.: Simplicity. Notre Dame J. Form. Log. 29, 396–411 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pambuccian V.: The simplest axiom system for plane hyperbolic geometry. Stud. Log. 77, 385–411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pambuccian V.: Hyperbolic geometry in terms of point-reflections or of line-orthogonality. Math. Pannon. 15, 241–258 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Pambuccian V.: The complexity of plane hyperbolic incidence geometry is ∀∃. Math. Log. Q. 51(3), 277–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pambuccian V.: The axiomatics of ordered geometry, I. Ordered incidence spaces. Expo. Math. 29, 24–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pambuccian V.: Axiomatizations of hyperbolic and absolute geometries. In: Prékopa, A., Molnár, E. (eds) Non-Euclidean geometries: Janos Bolyai Memorial Volume, pp. 119–153. Springer, New York (2006)

    Google Scholar 

  21. Skala H.L.: Projective type axioms for the hyperbolic plane. Geom. Dedic. 44, 255–272 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Struve H., Struve R.: Ein spiegelungsgeometrischer Aufbau der cominkowskischen Geometrie. Abh. Math. Sem. Univ. Hamburg 54, 111–118 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tarski A.: What is elementary geometry?. In: Henkin, L., Suppes, P., Tarski, A. (eds) The axiomatic method., pp. 16–29. North-Holland, Amsterdam (2006)

    Google Scholar 

  24. Veblen O., Young J.W.: Projective Geometry, vols. 1, 2. Boston (1910)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Struve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struve, R. The calculus of reflections and the order relation in hyperbolic geometry. J. Geom. 103, 333–346 (2012). https://doi.org/10.1007/s00022-012-0123-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-012-0123-5

Mathematics Subject Classification (2010)

Keywords

Navigation