The effective field theory of cosmological large scale structures
 John Joseph M. Carrasco,
 Mark P. Hertzberg,
 Leonardo Senatore
 … show all 3 hide
Abstract
Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from Nbody simulations. We find that the speed of sound of the effective fluid is $ c_s^2 \approx {1}{0^{{  {6}}}}{c^{2}} $ and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)^{4}. The predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ⋍ 0.24h Mpc^{−1}.
 C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE]. CrossRef
 L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP 04 (2012) 024 [arXiv:1009.2093] [INSPIRE]. CrossRef
 S. Weinberg, The quantum theory of fields. Vol. 2: modern applications, Cambridge University Press, Cambridge U.K. (1996).
 T. Baldauf, U. Seljak, L. Senatore and M. Zaldarriaga, Galaxy bias and nonlinear structure formation in general relativity, JCAP 10 (2011) 031 [arXiv:1106.5507] [INSPIRE]. CrossRef
 D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological nonlinearities as an effective fluid, arXiv:1004.2488 [INSPIRE].
 F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1 [astroph/0112551] [INSPIRE]. CrossRef
 B. Jain and E. Bertschinger, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J. 431 (1994) 495 [astroph/9311070] [INSPIRE]. CrossRef
 M. Shoji and E. Komatsu, Thirdorder perturbation theory with nonlinear pressure, Astrophys. J. 700 (2009) 705 [arXiv:0903.2669] [INSPIRE]. CrossRef
 D. Jeong and E. Komatsu, Perturbation theory reloaded: analytical calculation of nonlinearity in baryonic oscillations in the real space matter power spectrum, Astrophys. J. 651 (2006) 619 [astroph/0604075] [INSPIRE]. CrossRef
 M. Crocce and R. Scoccimarro, Renormalized cosmological perturbation theory, Phys. Rev. D 73 (2006) 063519 [astroph/0509418] [INSPIRE].
 M. Crocce and R. Scoccimarro, Nonlinear evolution of baryon acoustic oscillations, Phys. Rev. D 77 (2008) 023533 [arXiv:0704.2783] [INSPIRE].
 T. Matsubara, Resumming cosmological perturbations via the Lagrangian picture: oneloop results in real space and in redshift space, Phys. Rev. D 77 (2008) 063530 [arXiv:0711.2521] [INSPIRE].
 P. McDonald, Dark matter clustering: a simple renormalization group approach, Phys. Rev. D 75 (2007) 043514 [astroph/0606028] [INSPIRE].
 A. Taruya and T. Hiramatsu, A closure theory for nonlinear evolution of cosmological power spectra, arXiv:0708.1367 [INSPIRE].
 K. Izumi and J. Soda, Renormalized Newtonian cosmic evolution with primordial nongaussanity, Phys. Rev. D 76 (2007) 083517 [arXiv:0706.1604] [INSPIRE].
 S. Matarrese and M. Pietroni, Baryonic acoustic oscillations via the renormalization group, Mod. Phys. Lett. A 23 (2008) 25 [astroph/0702653] [INSPIRE].
 S. Matarrese and M. Pietroni, Resumming cosmic perturbations, JCAP 06 (2007) 026 [astroph/0703563] [INSPIRE]. CrossRef
 T. Nishimichi, H. Ohmuro, M. Nakamichi, A. Taruya, K. Yahata, et al., Characteristic scales of baryon acoustic oscillations from perturbation theory: nonlinearity and redshiftspace distortion effects, arXiv:0705.1589 [INSPIRE].
 R. Takahashi, Third order density perturbation and oneloop power spectrum in a dark energy dominated universe, Prog. Theor. Phys. 120 (2008) 549 [arXiv:0806.1437] [INSPIRE]. CrossRef
 J. Carlson, M. White and N. Padmanabhan, A critical look at cosmological perturbation theory techniques, Phys. Rev. D 80 (2009) 043531 [arXiv:0905.0479] [INSPIRE].
 A.L. Fitzpatrick, L. Senatore and M. Zaldarriaga, Contributions to the dark matter 3pt function from the radiation era, JCAP 05 (2010) 004 [arXiv:0902.2814] [INSPIRE]. CrossRef
 K. Enqvist and G. Rigopoulos, Nonlinear mode coupling and the growth of perturbations in LCDM, JCAP 03 (2011) 005 [arXiv:1008.2751] [INSPIRE]. CrossRef
 M. Pietroni, G. Mangano, N. Saviano and M. Viel, Coarsegrained cosmological perturbation theory, JCAP 01 (2012) 019 [arXiv:1108.5203] [INSPIRE]. CrossRef
 S. Tassev and M. Zaldarriaga, The mildly nonlinear regime of structure formation, JCAP 04 (2012) 013 [arXiv:1109.4939] [INSPIRE]. CrossRef
 S. Tassev and M. Zaldarriaga, Estimating CDM particle trajectories in the mildly nonlinear regime of structure formation. Implications for the density field in real and redshift space, arXiv:1203.5785 [INSPIRE].
 S. Tassev and M. Zaldarriaga, Towards an optimal reconstruction of baryon oscillations, arXiv:1203.6066 [INSPIRE].
 L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE]. CrossRef
 L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, arXiv:1203.6354 [INSPIRE].
 G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of zeta in single clock inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE]. CrossRef
 J.J. Carrasco, S. Foreman and L. Senatore 1.5 loops in the effective field theory for large scale structures, work in progress.
 McBride et al., in preparation.
 P.S. Behroozi, R.H. Wechsler, H.Y. Wu, M.T. Busha, A.A. Klypin, et al., Gravitationally consistent halo catalogs and merger trees for precision cosmology, arXiv:1110.4370 [http://lss.phy.vanderbilt.edu/lasdamas/simulations.html] [INSPIRE].
 H. Martel and W. Freudling Secondorder perturbation theory in Omega is not equal to Friedmann models, Astrophys. J. 371 (1991) 1. CrossRef
 F. Bernardeau, Skewness and kurtosis in large scale cosmic fields, Astrophys. J. 433 (1994) 1 [astroph/9312026] [INSPIRE]. CrossRef
 R. Scoccimarro, S. Colombi, J.N. Fry, J.A. Frieman, E. Hivon, et al., Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J. 496 (1998) 586 [astroph/9704075] [INSPIRE]. CrossRef
 Title
 The effective field theory of cosmological large scale structures
 Open Access
 Available under Open Access This content is freely available online to anyone, anywhere at any time.
 Journal

Journal of High Energy Physics
2012:82
 Online Date
 September 2012
 DOI
 10.1007/JHEP09(2012)082
 Online ISSN
 10298479
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Keywords

 Cosmology of Theories beyond the SM
 Stochastic Processes
 Renormalization Regularization and Renormalons
 Industry Sectors
 Authors

 John Joseph M. Carrasco ^{(1)}
 Mark P. Hertzberg ^{(1)} ^{(2)}
 Leonardo Senatore ^{(1)} ^{(2)}
 Author Affiliations

 1. Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA, 94306, U.S.A.
 2. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC, Menlo Park, CA, 94025, U.S.A.