Skip to main content
Log in

Brain stem neuronal noise and neocortical “resonance”

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a qualitative model and data in evidence for the selection and stabilization of neocortical brain-wave power spectral modes by slow periodic and fast noise driving by brain stem neurons. Unlike noise effects in a bistable potential, increasing noise amplitude via more brain stem neurons increases the measure on unstable manifolds trapped in the saddle-sinks of the neural membrane attractor andincreases dwell times. We suggest that the effect of noise in expanding dynamical systems such as the generalized neuronal membrane equations studied here may be analogous to that of many-frequency quasiperiodic driving which leads to the stabilization of the EEG as a strange, nonchaotic attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Selz and A. J. Mandell, Bernoulli partition-equivalence of intermittent neuronal discharge patterns,Int. J. Bif. Chaos 1:717–722 (1991).

    Google Scholar 

  2. S. L. Foote and J. H. Morrison, Extrathalamic modulation of cortical function,Annu. Rev. Neurosci. 10:67–95 (1987).

    Google Scholar 

  3. A. J. Mandell and K. A. Selz, Period adding, hierarchical protein modes and electroencephalographically defined states of consciousness, inFirst Experimental Chaos Conference, S. Vohra, M. Spano, M. Shlesinger, L. Pecora, and W. Ditto, eds. (World Scientific, Singapore, 1992).

    Google Scholar 

  4. A. J. Mandell, K. A. Selz, and M. F. Shlesinger, Some comments on the weaving of contemporary minds; resonant neuronal quasiperiodicity, period adding, and0(2) symmetry in the EEG, inMeasuring Chaos in the Human Brain, D. Duke and W. Pritchard, eds. (World Scientific, Singapore, 1991).

    Google Scholar 

  5. A. Bulsara, E. W. Jacobs, T. Zhou, F. Moss, and L. Kiss, Stochastic resonance in a single neuron model: Theory and analog simulation,J. Theor. Biol. 152:531–555 (1991).

    Google Scholar 

  6. A. Longtin, A. Bulsara, and F. Moss, Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons,Phys. Rev. Lett. 67:656–659 (1991).

    Google Scholar 

  7. M. P. Paulus, S. F. Gass, and A. J. Mandell, A realistic, minimal “middle layer” for neural networks,Physica D 40:135–155 (1989).

    Google Scholar 

  8. E. D. Adrian, F. Bremer, and H. H. Jasper,Brain Mechanisms and Consciousness (Thomas, Springfield, Illinois, 1954).

    Google Scholar 

  9. J. L. Cummings,Subcortical Dementia (Oxford University Press, Oxford, 1990).

    Google Scholar 

  10. A. J. Mandell and M. F. Shlesinger, Lost choices; parallelism and topological entropy decrements in neurobiological aging, inThe Ubiguity of Chaos (AAAS Press, Washington, D.C., 1990).

    Google Scholar 

  11. W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity,Bull. Math. Biophys. 5:115–133 (1943).

    Google Scholar 

  12. D. Colquhoun and F. Sigworth, Fitting and statistical analysis of single-channel records, inSingle Channel Recording, B. Sakmann and E. Neher, eds. (Plenum Press, New York, 1983).

    Google Scholar 

  13. L. S. Liebovitch, Testing fractal and Markov models of ion channel kinetics,Biophys. J. 55:373–377 (1989).

    Google Scholar 

  14. M. F. Shlesinger, Fractal time in condensed matter physics,Annu. Rev. Phys. Chem. 39:269–290 (1988).

    Google Scholar 

  15. A. J. Mandell, From intermittency to transitivity in neuropsychobiological flows,Am. J. Physiol. 245:R484-R494 (1983).

    PubMed  Google Scholar 

  16. A. J. Mandell and J. A. S. Kelso, Dissipative and statistical mechanics of amine neuron activity, inEssays on Classical and Quantum Dynamics, J. A. Ellison and H. Uberall, eds. (Gordon and Breach, Philadelphia, 1991).

    Google Scholar 

  17. A. J. Mandell and K. A. Selz, Is the EEG a strange attractor? Brain stem neuronal discharge patterns and electroencephalographic rhythms, inThe Impact of Chaos on Science and Society, C. Grebogi and J. Yorke, eds. (United Nations Press, Tokyo, 1992).

    Google Scholar 

  18. M. Levi, Qualitative analysis of the periodically forced relaxation oscillations,AMS Mem. #244 (1981).

  19. J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors,Rev. Mod. Phys. 57:617–656 (1985).

    Google Scholar 

  20. K. P. Scholz and J. H. Byrne, Intercellular injection of cyclic AMP induces a long-term reduction of neuronal potassium current,Science 240:1664–1666 (1987).

    Google Scholar 

  21. J. P. Keener, Analog circuitry for the van der Pol and FitzHugh-Nagumo equations,IEEE SMC-13:1010–1014 (1983).

    Google Scholar 

  22. J. Grasman, E. J. Veling, and G. M. Willems, Relaxation oscillations governed by a van der Pol equation with periodic forcing term,SIAM J. Appl. Math. 31:667–676 (1976).

    Google Scholar 

  23. M. Steriade and R. W. McCarley,Brain Stem Control of Wakefulness and Sleep (Plenum Press, New York, 1990).

    Google Scholar 

  24. W. R. Klemm and R. P. Vertes,Brainstem Mechanisms of Behavior (Wiley, New York, 1990).

    Google Scholar 

  25. W. G. Walter,The Living Brain (Norton, New York, 1953).

    Google Scholar 

  26. L. S. Young, Stochastic stability of hyperbolic attractors,Ergodic Theory Dynamic Syst. 6:311–319 (1986).

    Google Scholar 

  27. Y. Kifer,Random Perturbations of Dynamical Systems (Birkhauser, Boston, 1988).

    Google Scholar 

  28. D. Ruelle,Chaotic Evolution and Strange Attractors (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  29. E. D. Adrian, F. Bremer, and H. H. Jasper,Brain Mechanisms and Consciousness (Thomas, Springfield, Illinois, 1954).

    Google Scholar 

  30. I. Kan and J. A. Yorke, Antimonotonicity: Concurrent creation and annihilation of periodic orbits,Bull. Am. Math. Soc. 23:469–476 (1990).

    Google Scholar 

  31. D. Ruelle, Small random perturbations of dynamical systems and the definition of attractors,Commun. Math. Phys. 82:137–151 (1981).

    Google Scholar 

  32. F. Moss and P. V. E. McClintock,Noise in Nonlinear Dynamical Systems (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  33. E. D. Adrian and B. H. C. Matthews, The Berger rhythm: Potential changes from the occipital lobes in man,Brain 57:355–384 (1934).

    Google Scholar 

  34. E. Basar,EEG-Brain Dynamics (Elsevier/North-Holland, Amsterdam, 1980).

    Google Scholar 

  35. J. P. Crutchfield and B. A. Huberman, Fluctuations and the onset of chaos,Phys. Lett. 77A:407–410 (1980).

    Google Scholar 

  36. C. Shagass, Electrical activity of the brain, inPsychophysiology, N. S. Greenfield and R. Sternbach, eds. (Holt, Rinehart, and Winston, New York, 1972).

    Google Scholar 

  37. A. Babloyantz and A. Dextexhe, Low dimensional chaos in an instance of epilepsy,Proc. Natl. Acad. Sci. USA 83:3513–3517 (1986).

    Google Scholar 

  38. A. Babloyantz, J. M. Salazar, and C. Nicolis, Evidence of chaotic dynamics of brain activity during the sleep cycle,Phys. Lett. 111A:152–156 (1985).

    Google Scholar 

  39. D. Gallez and A. Babloyantz, Lyapounov exponents for nonuniform attractors, Preprint (1991).

  40. P. E. Rapp, Chaos in the neurosciences: Cautionary tales from the frontier, Preprint (1992).

  41. C. Grebogi, E. Ott, S. Pelikans, and J. A. Yorke, Strange attractors that are not chaotic,Physica 13D:261–268 (1984).

    Google Scholar 

  42. F. J. Romeiras and E. Ott, Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing,Phys. Rev. A 35:4404–4411 (1987).

    Google Scholar 

  43. W. L. Ditto, M. L. Spano, H. T. Savage, S. N. Rauseo, J. Heagy, and E. Ott, Experimental observations of a strange nonchaotic attractor,Phys. Rev. Lett. 65:533–536 (1990).

    Google Scholar 

  44. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapounov exponents from a time series,Physica 16D:285–317 (1985).

    Google Scholar 

  45. P. E. Rapp, T. R., Bashore, J. M. Martinerie, A. M. Albano, I. D. Zimmerman, and A. I. Mees, Dynamics of brain electrical activity,Brain Topography 2:99–118 (1989).

    Google Scholar 

  46. J. Heagy and W. L. Ditto, Dynamics of a two-frequency parametrically driven Duffing oscillator,J. Nonlinear Sci. 1:423–455 (1991).

    Google Scholar 

  47. A. I. Mees and P. E. Rapp, Identifying state space dimension from outputs of nonlinear systems, Preprint (1990).

  48. G. K. Aghajanian, R. Y. Wang, and J. Baraban, Serotonergic and nonserotonergic neurons of the dorsal raphe,Brain Res. 153:169–175 (1978).

    Google Scholar 

  49. R. Vertes, A PHA-L analysis of ascending projections of dorsal raphe nucleus in rat,J. Comp. Neurol. 313:643–668 (1992).

    Google Scholar 

  50. J. M. Fuster and R. F. Doctor, Variations of optic lobe evoked potentials as a function of reticular activity in rabbits with implanted electrodes,J. Neurophysiol. 25:324–336 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandell, A.J., Selz, K.A. Brain stem neuronal noise and neocortical “resonance”. J Stat Phys 70, 355–373 (1993). https://doi.org/10.1007/BF01053973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053973

Key words

Navigation