Skip to main content
Log in

Almost periodic solution and global attractivity for a density dependent predator-prey system with mutual interference and Crowley–Martin response function

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, a nonautonomous density dependent predator-prey model with mutual interference and Crowley–Martin response function is proposed and studied. The dynamics of the system is analyzed mainly from the point of view of permanence, extinction, stability, existence and uniqueness of a positive almost periodic solution. It is also shown that the obtained permanence conditions are only sufficient but not necessary. The sufficient conditions are derived for globally attractive unique positive solution by constructing suitable Lyapunov functional. It is shown that sufficient conditions obtained for globally attractive unique positive solution depend on both the predator density dependent death rate and Crowley–Martin coefficient. The obtained analytical results are illustrated with the help of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lotka, A.J.: Elements of mathematical biology. Dover, New york (1956)

    MATH  Google Scholar 

  2. Freedman, H.I., Rao, V.S.H.: The trade-off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45(6), 991–1004 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Gopalsamy, K.: Global asymptotic stability in an almost periodic Lotka-Volterra system. J. Aust. Math. Ser. B. 27, 346–360 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Chen, F., Cao, X.: Existence of almost periodic solution in a ratio-dependent Leslie system with feedback controls. J. Math. Anal. Appl. 341, 1399–1412 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bohr, H.: Almost periodic functions. Chelsea, New York (1947)

  6. Tripathi, J.P., Abbas, S., Thakur, M.: Stability analysis of two prey one predator model. AIP Conf. Proc. 1479, 905–909 (2012)

    Google Scholar 

  7. Chesson, P.: Understanding the role of environment variation in population and community dynamics. Theor. Popul. Biol. 64, 253–254 (2003)

    Google Scholar 

  8. Gopalasamy, K.: Stability and oscillation in delay equation of population dynamics. Kluwer Academic Publishers, Dordrect (1992)

    Google Scholar 

  9. Berryman, A.A.: The origin and evolution of predator-prey theory. Ecol. Soc. Am. 73(5), 1530–1535 (1992)

    Google Scholar 

  10. Abbas, S., Banerjee, M., Hungerbuhler, N.: Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. J. Math. Anal. Appl. 367, 249–259 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Liu, S., Beretta, E.: A stage-structured predator-prey model of Beddington-DeAngelis type. SIAM J. Appl. Math. 66(4), 1101–1129 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Abbas, S., Sen, M., Banerjee, M.: Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dyn. 67, 203–214 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Cui, J., Takeuchi, Y.: Permanence, extinction and periodic solution of predator-prey system with Beddinton-DeAngelis functional response. J. Math. Anal. Appl. 317, 464–474 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Li, H., Takeuchi, Y.: Dynamics of the density dependent predator-prey system with Beddinton-DeAngelis functional response. J. Math. Anal. Appl. 374, 644–654 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Cantrell, R.S., Cosner, C.: On the dynamics of predator-prey models with the Beddington-DeAngelis functional response. J. Math. Anal. Appl. 257, 206–222 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a preypredator model with BeddingtonDeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80, 177–196 (2015)

    MATH  Google Scholar 

  17. Sklaski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001)

    Google Scholar 

  18. Beddington, J.R.: Mutual interference between parasites or predators and it’s effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340 (1975)

    Google Scholar 

  19. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for tropic interaction. Ecology 56(4), 881–892 (1975)

    Google Scholar 

  20. Yu, S.: Global asymptotic stability of a predator prey model with modified Leslie-Gower and Holling type-II scheme. Discrete Dyn. Nat. Soc. 2012, 208167 (2012)

  21. Fan, M., Kuang, Y.: Dynamics of a nonautonomous predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl. 295, 15–39 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Levin, S.A.: A more functional response to predator-prey stability. Am. Nat. 111, 381–383 (1977)

    Google Scholar 

  23. Bazykin, A., Khibnik, A., Krauskopf, B.: Nonlinear dynamics of interacting populations. World Scientific, Singapore (1998)

    Google Scholar 

  24. Kratina, P., Vos, M., Bateman, A., Anholt, B.R.: Functional responses modified by predator density. Oecologia 159, 425–433 (2009)

    Google Scholar 

  25. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with non-monotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    MATH  Google Scholar 

  26. Bereta, E., Kuang, Y.: Global analysis in some delayed ratio dependent predator-prey systems. Nonlinear. Anal. TMA. 32(3), 381–408 (1998)

    MATH  Google Scholar 

  27. Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator-prey model with Beddington-DeAngelis type Function Response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22, 427–450 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    MATH  Google Scholar 

  29. Hassell, M.P.: Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971)

    Google Scholar 

  30. Abrams, A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15, 337–341 (2000)

    Google Scholar 

  31. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophe and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    MATH  Google Scholar 

  32. Gakkhar, S., Naji, R.K.: Seasonally perturbed predator-prey system with predator-dependent functional response. Chaos Solitons Fractals 18, 1075–1083 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Chen, F., Shi, C.: Global attractivity in an almost periodic multi-species nonlinear ecological model. Appl. Math. Comput. 180, 376–392 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Shen, C.X.: Permanence and global attractivity of the food-chain system with Holling IV type functional response. Appl. Math. Comput. 194(1), 179–185 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Bartle, R.G., Bartle, R.G.: The elements of real analysis. Wiley, New York (1964)

    MATH  Google Scholar 

  36. Tripathi, J.P., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response. Commun. Nonlinear Sci. Numer. Simul. 30, 45–69 (2016)

    MathSciNet  Google Scholar 

  37. Xia, Y., Cao, J.: Almost periodicity in an ecological model with M-predators and N-preys by “pure-delay type” system. Nonlinear Dyn. 39, 275–304 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Feng, C.H., Liu, Y.J.: Almost periodic solution for delay Lotka-Volterra systems. Acta. Math. Appl. Sin. 28(3), 459–465 (2005)

    MathSciNet  Google Scholar 

  39. Dong, Q., Ma, W., Sun, M.: The asymptotic behaviour of a chemostat model with Crowley Martin type functional response and time delays. J. Math. Chem. 51, 1231–1248 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benth. Soc. 8, 211–221 (1989)

    Google Scholar 

  41. Tripathi, J.P., Abbas, S., Thakur, M.: Local and global stability analysis of two prey one predator model with help. Commun. Nonlinear Sci. Numer. Sim. 19, 3284–3297 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Upadhyay, R.K., Raw, S.N., Rai, V.: Dynamic complexities in a tri-trophic food chain model with Holling type II and Crowley-Martin functional response. Nonlin. Anal. Model Control. 15(3), 361–375 (2010)

    MATH  Google Scholar 

  43. Lin, X., Chen, F.: Almost periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response. Appl, Math, Comput. 214, 548–556 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Tripathi J.P., Abbas S.: Almost periodicity of a modified Leslie–Gower predator–prey system with Crowley–Martin functional response. Mathematical Analysis and Its Applications. Springer India, pp 309–317 (2015)

  45. Shi, C.L., Li, Z., Chen, F.D.: The permanence and extinction of a nonlinear growth rate-single nonautonomous dispersal models with delay times. Nonlinear. Anal. RWA. 8(5), 536–1550 (2007)

    Google Scholar 

  46. Wang, X.L., Du, Z.J., Liang, J.: Existence and global attractivity of positive almost periodic solution to a Lotka-Volterra model. Nonlinear Anal. RWA. 11, 4054–4061 (2010)

    MATH  Google Scholar 

  47. He, C.Y.: Almost periodic differential equations. Higher Education Publishing House, Beijing (1992)

  48. Fink, A.M.: Almost periodic differential equations. Lecture Notes in Mathematics, vol. 377. Springer-Verlag, Berlin (1974)

  49. Wang, Q., Dai, B.X.: Almost periodic solution for n-species Lotka-Volterra competitive systems and feedback controls. Appl. Math. Comput. 200(1), 133–146 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very thankful to the anonymous reviewers and the handling editor for their constructive comments and suggestions which helped us to improve the quality of the paper. This work is fully supported by Central University of Rajasthan, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Prakash Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, J.P. Almost periodic solution and global attractivity for a density dependent predator-prey system with mutual interference and Crowley–Martin response function. Differ Equ Dyn Syst 28, 19–37 (2020). https://doi.org/10.1007/s12591-016-0298-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0298-6

Keywords

Navigation