Skip to main content

Advertisement

Log in

Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

The electrification of organic syntheses is a vividly growing research field and has attracted tremendous attention by the chemical industry. This review highlights aspects of electrosynthesis that are rarely addressed in other articles on the topic: the energy consumption and energy efficiency of technically relevant electro-organic syntheses.

Four examples on different scales are outlined.

Electro-organic synthesis has experienced a renaissance within the past years. This review addresses the energy efficiency or energy demand of electrochemically driven transformations as it is a key parameter taken into account by, for example, decision makers in industry. The influential factors are illustrated that determine the energy efficiency and discussed what it takes for an electrochemical process to be classified as “energy efficient.” Typical advantages of electrosynthetic approaches are summarized and characteristic aspects regarding the efficiency of electro-organic processes, such as electric energy consumption, are defined. Technically well-implemented examples are described to illustrate the possible benefits of electrochemical approaches. Further, promising research examples are highlighted and show that the conversion of fine chemicals is rather attractive than the electrochemical generation of synthetic fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Scheme 1.
Scheme 2.
Scheme 3.
Figure 6.
Scheme 4.
Scheme 5.
Scheme 6.
Table 1.
Table 2.

Similar content being viewed by others

References

  1. Waldvogel S.R. and Janza B.: Renaissance of electrosynthetic methods for the construction of complex molecules. Angew. Chem. Int. Ed. 53, 7122–7123 (2014).

    CAS  Google Scholar 

  2. Wiebe A., Gieshoff T., Möhle S., Rodrigo E., Zirbes M., and Waldvogel S.R.: Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    CAS  Google Scholar 

  3. Anastas P.T. and Kirchhoff M.M.: Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35, 686–694 (2002).

    CAS  Google Scholar 

  4. Frontana-Uribe B.A., Little R.D., Ibanez J.G., Palma A., and Vasquez-Medrano R.: Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem. 12, 2099–2119 (2010).

    CAS  Google Scholar 

  5. Pollok D. and Waldvogel S.R.: Electro-organic synthesis: A 21st Century Technique. Chem. Sci. (2020). In progress. doi:10.1039/D0SC01848A.

    Google Scholar 

  6. Moeller K.D.: Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    CAS  Google Scholar 

  7. Waldvogel S.R., Lips S., Selt M., Riehl B., and Kampf C.J.: Electrochemical arylation reaction. Chem. Rev. 118, 6706–6765 (2018).

    CAS  Google Scholar 

  8. Yan M., Kawamata Y., and Baran P.S.: Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  Google Scholar 

  9. Puettner H.: Organic Electrochemistry, 4th ed., Chapter 31, Lund H. and Hammerich O.: (Crc Press Inc, Boca Raton, 2000), pp. 1259–1307.

  10. Hamann C.H., Hamnett A., and Vielstich W.: Electrochemistry (Wiley-VCH, Weinheim, 2007), pp. 159–164.

    Google Scholar 

  11. Bard A.J., Stratmann M., Schaefer H.J., and Jörissen J.: Practical aspects of preparative scale electrolysis. Encyclopedia of Electrochemistry 8, 35 (2004).

    Google Scholar 

  12. Chen C., Khosrowabadi Kotyk J.F., and Sheehan S.W.: Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    CAS  Google Scholar 

  13. De Luna P., Hahn C., Higgins D., Jaffer S.A., Jaramillo T.F., and Sargent E.H.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 1–9 (2019).

    Google Scholar 

  14. Nitopi S.A., Bertheussen E., Scott S.B., Liu X., Engstfeld A.K., Horch S., Seger B., Stephens I.E.L., Chan K., Hahn C., Nørskov J.K., Jaramilo T.F., and Chorkendorff I.: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  Google Scholar 

  15. Yang N., Waldvogel S.R., and Jiang X.: Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl. Mater. Interfaces 8, 28357–28371 (2016).

    CAS  Google Scholar 

  16. Higgins D., Hahn C., Xiang C., Jaramillo T.F., and Weber A.Z.: Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    CAS  Google Scholar 

  17. Rademaekers K., Smith M., Yearwood J., Saheb Y., Moerenhout J., Pollier K., Debrosses N., Badouard T., Peffen A., Pollitt H., Heald S., and Altman M.: Study on energy prices, costs and subsidies and their impact on industry and households. Trinomics 74 (2018).

    Google Scholar 

  18. Li X., Anderson P., Jhong H.M., Paster M., Stubbins J.F., and Kenis P.J.A.: Greenhouse gas emissions, energy efficiency, and cost of synthetic fuel production using electrochemical CO2 conversion and the Fischer-Tropsch process. Energy Fuels 30, 5980–5989 (2016).

    CAS  Google Scholar 

  19. Pletcher D.: The cathodic reduction of carbon dioxide–What can it realistically achieve? A mini review. Electrochem. Commun. 61, 97–101 (2015).

    CAS  Google Scholar 

  20. Küngas R.: Review–Electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).

    Google Scholar 

  21. Al-Rowaili F.N., Jamal A., Ba Shammakh M.S., and Rana A.A.: Review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal-organic framework (MOF) and non-MOF catalysts: Challenges and future prospects. ACS Sustain. Chem. Eng. 6, 15895–15914 (2018).

    CAS  Google Scholar 

  22. Dexin Yang Y., Qinggong Z., Chunjun C., Huizhen L., Zhimin L., Zhijuan Z., Xiaoyu Z., Shoujie L., and Buxing H.: Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10, 1–9 (2019).

    Google Scholar 

  23. Tackett B.M., Gomez E., and Chen J.G.: Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2, 381–386 (2019).

    CAS  Google Scholar 

  24. Möhle S., Zirbes M., Rodrigo E., Gieshoff T., Wiebe A., and Waldvogel S.R.: Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).

    Google Scholar 

  25. Wendt H., Vogt H., Kreysa G., Kolb D.M., Engelmann G.E., Ziegler J.C., Goldacker H., Jüttner K., Gallla U., Schmieder H., and Steckhan E.: Ullmann's Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2000); p. 73–85.

    Google Scholar 

  26. Vernon D.: Mechanisms of the electrohydrodimerization of activated olefins. The mechanism in proton donor poor solvents, a revelation. Acta Chem. Scand. 35, 51–52 (1981).

    Google Scholar 

  27. Vyazankin I.L. and Knunyants N.S.: Hydrodimerization of acrylonitrile. Proc. Natl. Acad. Sci. USA 6, 253–256 (1958).

  28. Vaze A.S., Sawant S.B., and Pangarkar V.G.: Electrochemical oxidation of p-t-butyltoluene to p-t-butylbenzaldehyde. J. Appl. Chem. 28, 623–626 (1998).

    CAS  Google Scholar 

  29. Hannebaum H., Voss H., and Weiper-Idelmann A.: patent EP 0638665 B1, 1996.

  30. Wang L., Kong Y., Jiang J., Wei D., Li P., Yang S., and Ting Y.: Optimal wastewater treatment using a packed-bed electrode reactor (PBER): From laboratory experiments to industrial-scale approaches. Chem. Eng. J. 334, 707–713 (2018).

    CAS  Google Scholar 

  31. Wiebe A., Schollmeyer D., Dyballa K.M., Franke R., and Waldvogel S.R.: Selective synthesis of partially protected nonsymmetric biphenols by reagent- and metal-free anodic cross-coupling reaction. Angew. Chem. Int. Ed. 55, 11801–11805 (2016).

    CAS  Google Scholar 

  32. Schäfer H.J.: Recent Contributions of Kolbe Electrolysis to Organic Synthesis (Springer, 2005), Berlin, Heidelberg; pp. 91–151. ISBN 978-3-540-48139-3.

  33. Kirste A., Schnakenburg G., Stecker F., Fischer A., and Waldvogel S.R.: Anodic phenol: Arene cross-coupling reaction on boron-doped. Angew. Chem. Int. Ed. 49, 971–975 (2010).

    CAS  Google Scholar 

  34. Alexakis A. and Polet D.: Biphenol-based phosphoramidite ligands for the enantioselective copper-catalyzed conjugate addition of diethylzinc. J. Org. Chem. 69, 5660–5667 (2004).

    CAS  Google Scholar 

  35. Brunel J.M. and Ce P.: BINOL: A versatile chiral reagent. Chem. Rev. 105, 857–898 (2005).

    CAS  Google Scholar 

  36. Monti C., Gennari C., and Piarulli U.: Enantioselective conjugate addition of phenylboronic acid to enones catalysed by a chiral tropos/atropos rhodium complex at the coalescence temperature. Chem. Commun. 42, 5281–5283 (2005).

    Google Scholar 

  37. Franke R., Selent D., and Bo A.: Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    CAS  Google Scholar 

  38. Mormul J., Mulzer M., Rosendahl T., Rominger F., Limbach M., and Hofmann P.: Synthesis of adipic aldehyde by n-selective hydroformylation of 4-pentenal. Organometallics 34, 4102–4108 (2015).

    CAS  Google Scholar 

  39. Yadav J.S., Reddy B.V.S., Uma Gayathri K., and Prasad A.R.: [Bmim]PF6/RuCl3xH2O: A novel and recyclable catalytic system for the oxidative coupling of β-naphthols. New J. Chem. 27, 1684–1686 (2003).

    CAS  Google Scholar 

  40. Hwang D., Chen C., and Uang B.: Aerobic catalytic oxidative coupling of 2-naphthols and phenols by VO (acac)2. Chem. Commun. 13, 1207–1208 (1999).

    Google Scholar 

  41. Sharma V.B., Jain S.L., and Sain B.: Methyltrioxorhenium-catalyzed aerobic oxidative coupling of 2-naphthols to binaphthols. Tetrahedron Lett. 44, 2655–2656 (2003).

    CAS  Google Scholar 

  42. Malkowsky I.M., Fröhlich R., Griesbach U., Pütter H., and Waldvogel S.R.: Facile and reliable synthesis of tetraphenoxyborates and their properties. Eur. J. Inorg. Chem. 8, 1690–1697 (2006).

    Google Scholar 

  43. Malkowsky I.M., Rommel C.E., Wedeking K., Fröhlich R., Bergander K., Nieger M., Quaiser C., Griesbach U., Pütter H., and Waldvogel S.R.: Facile and highly diastereoselective formation of a novel pentacyclic scaffold by direct anodic oxidation of 2,4-dimethylphenol. Eur. J. Org. Chem. 2006, 241–245 (2006).

    Google Scholar 

  44. Barjau J., Königs P., Kataeva O., and Waldvogel S.R.: Reinvestigation of highly diastereoselective pentacyclic spirolactone formation by direct anodic oxidation of 2,4-dimethylphenol. Synlett 15, 2309–2312 (2008).

    Google Scholar 

  45. Barjau J., Schnakenburg G., and Waldvogel S.R.: Diversity-oriented synthesis of polycyclic scaffolds by modification of an anodic product derived from 2,4-dimethylphenol. Angew. Chem. Int. Ed. 50, 1415–1419 (2011).

    CAS  Google Scholar 

  46. Rommel C., Malkowsky I., Waldvogel S. R., Pütter H., and Griesbach U.: patent WO 2005/075709 A2, 2005.

  47. Malkowsky I.M., Rommel C.E., Fröhlich R., Griesbach U., Püttner H., and Waldvogel S.R.: Novel template-directed anodic phenol-coupling reaction. Chemistry 12, 7482–7488 (2006).

    CAS  Google Scholar 

  48. Rommel C. E., Malkowsky I., Waldvogel S., Puetter H., and Griesbach U.: Anodic dimerization of substituted benzenes for the production of biarylalcohols, PCT Int. Appl. WO 2005075709 A2 20050818, 2005.

    Google Scholar 

  49. Malkowsky I.M., Griesbach U., Pütter H., and Waldvogel S.R.: Unexpected highly chemoselective anodic ortho-coupling reaction of 2,4-dimethylphenol on boron-doped diamond electrodes. Eur. J. Org. Chem. 20, 4569–4572 (2006).

    Google Scholar 

  50. Kirste A., Nieger M., Malkowsky I.M., Stecker F., Fischer A., and Waldvogel S.R.: Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. Chem. Eur. J. 15, 2273–2277 (2009).

    CAS  Google Scholar 

  51. Ayata S., Stefanova A., Ernst S., and Baltruschat H.: The electro-oxidation of water and alcohols at BDD in hexafluoroisopropanol. J. Electroanal. Chem. 701, 1–6 (2013).

    CAS  Google Scholar 

  52. Lips S., Wiebe A., Elsler B., Schollmeyer D., Dyballa K.M., Franke R., and Waldvogel S.R.: Synthesis of meta-terphenyl-2,2′′-diols by anodic C−C cross-coupling reactions. Angew. Chem. Int. Ed. 55, 10872–10876 (2016).

    CAS  Google Scholar 

  53. Cheng J. and Deming T.J.: Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. Pept. Mater. 310, 1–26 (2011).

    Google Scholar 

  54. Lips S. and Waldvogel S.R.: Use of boron-doped diamond electrodes in electro-organic synthesis. ChemElectroChem 6, 1649–1660 (2019).

    CAS  Google Scholar 

  55. Selt M., Mentizi S., Schollmeyer D., Franke R., and Waldvogel S.R.: Selective and scalable dehydrogenative electrochemical synthesis of 3,3’,5,5’-tetramethyl-2,2’-biphenol. Synlett 30, 2062–2067 (2019).

    CAS  Google Scholar 

  56. Selt M., Franke R., and Waldvogel S.R.: Supporting-electrolyte-free and scalable flow process for the electrochemical synthesis of 3,3′,5,5′-tetramethyl-2,2′-biphenol. Org. Process Res. Dev. (2020). In progress. doi:10.1021/acs.oprd.0c00170.

    Google Scholar 

  57. Kirste A., Elsler B., Schnakenburg G., and Waldvogel S.R.: Efficient anodic and direct phenol-arene C,C cross-coupling: The benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    CAS  Google Scholar 

  58. Röckl J.L., Schollmeyer D., Franke R., and Waldvogel S.R.: Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing groups. Angew. Chem. Int. Ed. 59, 315–319 (2020).

    Google Scholar 

  59. Kuilin L., Yanchen F., Ying Z., Yi Y., Jinrong W., Ying Z., and Qianfan Z.: Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. J. Mater. Chem. A 6, 5025–5031 (2018).

    Google Scholar 

  60. Hoang T.T.H., Verma S., Ma S., Fister T.T., Timoshenko J., Frenkel A.I., Kenis P.J., and Gewirth A.A.: Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS  Google Scholar 

  61. Li F., Thevenon A., Rosas-Hernández A., Wang Z., Li Y., Gabardo C.M., Ozden A., Dinh C.T., Li J., Wang Y., Edwards J.P., Xu Y., McCallum C., Tao L., Liang Z.-Q., Luo M., Wang X., Li H., O'Brien C.P., Tan C.-S., Nam D.-H., Quintero-Bermudez R., Zhuang T.-T., Li Y.C., Han Z., Britt R.D., Sinton D., Agapie T., Peters J.C., and Sargent E.H.: Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    CAS  Google Scholar 

  62. García de Arquer F.P., Dinh C.-T.-, Ozden A., Wicks J., McCallum C., Kirmani A.R., Nam D.-H., Gabardo C., Seifitokaldani A., Wang X., Li Y.C., Li F., Edwards J., Richter L.J., Thorpe S.J., Sinton D., and Sargent E.H.: CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Google Scholar 

Download references

Acknowledgments

We are grateful for graphical support by Martin Klein. Support by the State Rhineland-Palatinate in frame of SusInnoScience is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Seidler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidler, J., Strugatchi, J., Gärtner, T. et al. Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions. MRS Energy & Sustainability 7, 42 (2020). https://doi.org/10.1557/mre.2020.42

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.42

Keywords

Navigation