Skip to main content
Log in

Superoperator Approach to the Theory of Hot Nuclei and Astrophysical Applications: II—Electron Capture in Stars

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Electron captures on nuclei play an essential role in the dynamics of the collapsing core of a massive star that leads to a supernova explosion. We propose a novel thermodynamically consistent approach to calculate capture rates and cross sections of \({{e}^{ - }}\) capture on hot nuclei in the stellar interior. The method is based on the quasi-particle random phase approximation extended to finite temperature using the tool of the superoperator formalism. By the example of \(^{{54,56}}\)Fe it is shown that thermodynamically consistent incorporation of thermal effects leads to a stronger temperature dependence of the \({{e}^{ - }}\)-capture rates and cross sections for iron group nuclei than predicted by the shell-model calculations. The combined action of thermal effects and pairing correlations on the unblocking of Gamow–Teller \(p \to n\)-transitions is considered for neutron-rich nuclei around N = 50. It is shown that it is thermal effects that lead to the unblocking of low-energy transitions. Due to this, as well as to the contribution of forbidden transitions, the electron capture does not stop at nuclei with N = 50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.

Similar content being viewed by others

Notes

  1. First of all, we are talking about the colossal values of density, temperature, and magnetic field strength.

  2. A more detailed presentation of the physics of supernovae is given in review articles [2, 4, 1923], as well as in the collection [6], which most fully reflects the current state of knowledge in this area.

  3. The value \({{Y}_{e}}\) is defined as a ratio of the density of number of electrons \({{n}_{e}}\) [cm–3] to the density of number of nucleons \({{n}_{N}}\) [cm–3]

    $${{Y}_{{\text{e}}}} = \frac{{{{n}_{{\text{e}}}}}}{{{{n}_{N}}}}.$$

    Since the substance density is \(\rho = {{n}_{N}}{{m}_{u}}\) [g/cm3], where \({{m}_{u}}\)is the atomic mass unit [g], and since 1 a. m. u., expressed in grams, is numerically almost equal to the inverse of Avogadro’s number \({{N}_{A}}\), then \({{Y}_{{\text{e}}}}\) is numerically equal to the number of moles of electrons per gram of the substance [mol/g],

    $${{Y}_{{\text{e}}}} = \frac{{{{n}_{{\text{e}}}}}}{{\rho {{N}_{{\text{A}}}}}}.$$

    The latter relation is often used as a definition of \({{Y}_{e}}\) (electron mole number) [21]. With this definition, the \(\rho {{Y}_{e}}\) value is numerically equal to the number of moles of electrons per unit volume [mol/cm3].

  4. To capture an electron in the ground state of \(^{{56}}\)Fe, a threshold energy \(Q = M{{(}^{{56}}}{\text{Fe}}) - M{{(}^{{56}}}{\text{Mn}}) = 4.2\) MeV is required. A temperature different from zero accelerates the capture of electrons.

  5. In stars with \(M \gtrsim 20{{M}_{ \odot }}\), due to the higher temperature, a collapse begins owing to the nuclear photodisintegration. With the higher mass, \(M \gtrsim 60{{M}_{ \odot }}\), the process of electron-positron pair production begins to contribute to the violation of stability [24].

  6. The low value of entropy per nucleon (\(s \sim 1\) ) corresponds to the fact that the fraction of free nucleons is small. Intuitively, this follows from the fact that a heavy nucleus has fewer degrees of freedom than many free nucleons or light nuclei.

  7. At low neutrino energies \({{\varepsilon }_{\nu }}\), for the cross section of coherent elastic scattering on nuclei, we have \(\sigma \sim {{N}^{2}}\varepsilon _{\nu }^{2}\).

  8. Homologous collapse means that the rate of matter falling on the center is proportional to the distance to the center.

  9. Afterwards, depending on the mass, the protoneutron star either evolves into a neutron star, or collapses into a black hole.

  10.  The inverse process of \({{\beta }^{ - }}\)-decay of nuclei is also possible, but it is rather quickly blocked due to the increasing Fermi energy of the electron gas [3, 60].

  11.  An analogy with a spring is appropriate here. The larger the spring, the more energy it can store when compressed.

  12.  Following [63], we included the rest mass \({{m}_{{\text{e}}}}{{c}^{2}}\) in the definition of \({{\mu }_{e}}\).

  13.  In [64] instead of \({{Y}_{e}}\), the so-called average electron molecular weight \({{\mu }_{{\text{e}}}} = {1 \mathord{\left/ {\vphantom {1 {{{Y}_{{\text{e}}}}}}} \right. \kern-0em} {{{Y}_{{\text{e}}}}}}\) is used, which is equal to the mass (in amu) per electron. Since 1 amu, expressed in grams, is numerically almost equal to the inverse of Avogadro’s number, then the value \({{\mu }_{e}}\), expressed in amu per electron, numerically coincides with the mass (in grams) per mole of electrons. On the left-hand side of (7), the quantity \(\rho {{Y}_{e}}\) has the dimensionality mol/cm3 (see footnote on page 941).

  14.  With \(T \ne 0\), a total number of electrons is composed of ionization electrons and electrons resulting from the production of electron-positron pairs (\(\gamma \to {{e}^{ - }} + {{e}^{ + }}\)) from \(\gamma \)-quanta with the energy \( \geqslant \,2{{m}_{{\text{e}}}}{{c}^{2}}\) (see [65, p. 854]). Since the chemical potential of \(\gamma \)-quanta is zero, then in conditions of thermodynamic equilibrium, \({{\mu }_{{\text{e}}}} + {{\mu }_{p}} = 0\) [27], i.e., positrons are described by distribution function (6) with the chemical potential \({{\mu }_{p}} = - {{\mu }_{{\text{e}}}}\).

  15.  In nuclei with \(N > Z\) \(p \to n\) Fermi transitions from the ground state are forbidden, since they do not satisfy the isospin selection rule (\(\Delta T = 0\)). However, these transitions are possible from excited states.

  16.  Prior to this, it was believed that at the stage of collapse, the capture of electrons is carried out mainly by free protons, which are formed during the collapse of nuclei. However, an increase in the rate of \({{e}^{ - }}\)-capture by nuclei due to the GT\(_{ + }\) resonance leads to a decrease in entropy, as a result of which the nuclei do not fall apart. Therefore, though free protons capture electrons faster than nuclei, their contribution to \({{e}^{ - }}\)-capture is insignificant due to the low concentration. However, an increase of the rate of \({{e}^{ - }}\)-capture by nuclei due to the GT\(_{ + }\) resonance leads to a decrease in entropy, as a result of which the nuclei do not fall apart. Therefore, though free protons capture electrons faster than nuclei, their contribution to \({{e}^{ - }}\)-capture is insignificant due to the low concentration.

  17.  It should be noted that expression (14) neglects the effect of blocking the phase space for the resulting neutrinos. The blocking of the neutrino phase space due to the action of the Pauli principle occurs at densities of the order of several \({{10}^{{11}}}\,\,{\text{g/c}}{{{\text{m}}}^{3}}\), after it becomes possible to block neutrinos and form a degenerate neutrino gas (thermalization) with a distribution function \({{f}_{\nu }}({{\varepsilon }_{\nu }})\). This effect can be considered by introducing a blocking factor \((1 - {{f}_{\nu }}({{\varepsilon }_{\nu }}))\) under the integral sign. At lower densities, neutrinos leave the star without hindrance, and therefore, when calculating the rates of electron capture by nuclei with \(A = 21{\kern 1pt} - {\kern 1pt} 60\), it can be set to \({{f}_{\nu }}({{\varepsilon }_{\nu }}) = 0\).

  18.  It is worth recalling once again that the product of the density of a substance \(\rho \) [g/cm3] and the electron component \({{Y}_{{\text{e}}}}\) is numerically equal to the density of the electron gas [mol/cm3] (see footnote 4 on page 5).

  19.  For simplicity, we neglected the correction for the Coulomb interaction, i.e., we put \(F(Z,{{\varepsilon }_{{\text{e}}}}) = 1\).

  20.  It is assumed that the Fermi transition strength is concentrated in the isobar-analog state. The reduced probability of transition to this state is given by the expression \({{B}_{{if}}}({\text{F}}) = T(T + 1) - {{T}_{{zi}}}{{T}_{{zf}}}\).

  21.  Most experimental values of matrix elements for Fermi and Gamow–Teller discrete transitions, as well as data on nuclear levels, were taken from tables [79]. The matrix elements of allowed transitions for which there were no measurements were determined as average values to which log(ft) = 5.0 corresponds.

  22.  That is, all possible configurations of nucleons inside the valence \(sd\)-shell are considered, while the \(sp\)-shell is considered as a core.

  23.  In the SMMC method, the strength function \({{S}_{\Omega }}(E)\) of the operator \(\Omega \) is found by numerical inversion of the relation

    $${{R}_{\Omega }}(\tau ) = \int\limits_{ - \infty }^\infty {{{e}^{{ - E\tau }}}} {{S}_{\Omega }}(E)dE,$$
    (18)

    which relates it to the response function \({{R}_{\Omega }}(\tau )\) [97]. Uncertainties arise both in the calculation of the response function and in the numerical inversion of the Laplace transform (18).

  24.  Blocking is a consequence of the faster increase in the Fermi energy of the electron gas (\({{\mu }_{e}} \sim {{\rho }^{{1/3}}}\)) compared to the average value \(\langle Q\rangle \) in the \({{\beta }^{ - }}\) decay.

  25.  For this, a formula was used that includes the binding energies of four neighboring nuclei [125].

  26.  It is known [88, 89] that the experimentally found strength of charge-exchange GT transitions in the resonance region does not satisfy the sum rule SS+ = 3(NZ) and is approximately half of the required value. In essence, three possible mechanisms for suppressing the Gamow–Teller strength are discussed [149, 82]: (i) Configurational mixing of particle–hole (1p1h) configurations with more complex ones (2p2h, 3p3h, and so on) [150] leads to fragmentation of the Gamow–Teller strength in a wide energy range, including the region above the GT resonance, which makes it difficult to detect experimentally. (ii) The interaction of 1p1h configurations with configurations involving the \(\Delta (1232)\)-isobar excitation can push a part of the strength into the Δ-isobar excitation energy region (\( \approx \,300\) MeV) [151]. (iii) Renormalization of the axial-vector constant gA inside the nucleus due to meson-exchange currents [152]. Experimental studies of (p, n) [153] and (n, p) [154] reactions on 90Zr testify that configurational mixing is the most important mechanism for quenching the strength of GT transitions (see also review [82]). However, the results of theoretical calculations are contradictory. On the one hand, calculations within the so-called second RPA [155], which considers a coupling of 1p1h and 2p2h configurations, confirm this conclusion. On the other hand, calculations in the context of QPM [156] show that consideration of the interaction of quasi-particles with phonons cannot push the GT strength into the region of excitation energies above 30 MeV, at least in the case of central separable strengths. Self-consistent RPA calculations with Skyrme forces, including tensor interaction, demonstrate that the coupling of GT states to spin-quadrupole 1+ states can also contribute to the quenching of the Gamow–Teller strength (see review [157] and references therein). However, the relative value of this contribution depends on the parameters of the tensor interaction [158], which can vary over a wide range [159]. Thus, the question of the role of various mechanisms in the quenching of the GT strength remains open [149].

  27.  Table 1 in [86] gives the values S+ i n 54,56Fe obtained in LSSM calculations after multiplication by (0.74)2 (3.6 and 2.7, respectively). These values are close to the QPM–QRPA results after multiplying the latter by (0.74)2.

  28.  The position of the centroid of the GT\(_{ + }\) distribution (6.81 MeV) was obtained from the data given in Table 1 of work [86], by adding the difference between the masses of the daughter and parent nuclei \(M{{(}^{{56}}}{\text{Mn}}) - M{{(}^{{56}}}{\text{Fe}}) = 4.21\) MeV.

  29.  In the secular equation (345, Appendix C, Part I), the particle–hole matrix elements contain the factor \(1 - y_{{{{j}_{p}}}}^{2} - y_{{{{j}_{n}}}}^{2}\).

  30.  Recall that transitions from excited states of the nucleus are considered using two-thermal-quasi-particle configurations, including a tilde thermal quasi-particle: \(\beta _{{{{j}_{p}}}}^{\dag }\widetilde \beta _{{{{{\bar {j}}}_{n}}}}^{\dag }\), \(\widetilde \beta _{{{{{\bar {j}}}_{p}}}}^{\dag }\beta _{{{{j}_{n}}}}^{\dag }\) and \(\widetilde \beta _{{{{{\bar {j}}}_{p}}}}^{\dag }\widetilde \beta _{{{{{\bar {j}}}_{n}}}}^{\dag }\).

  31.  When calculating \({{\sigma }_{{{\text{ex}}}}}({{\varepsilon }_{e}},T)\), in the formula (23) only \( \downarrow \)-transitions were included.

  32.  Due to the absence of an \(E < 0\) component in the strength function of GT+ transitions, the threshold for electron capture by hot nuclei is also predicted by SMMC calculations [100].

  33.  This conclusion follows directly from Eq. (4) of work [115] and its discussion.

  34.  With \(\rho {{Y}_{{\text{e}}}} = {{10}^{{10}}}{\text{ g/c}}{{{\text{m}}}^{3}}\), the electron Fermi energy \({{\mu }_{{\text{e}}}} \approx 11\) MeV (see Fig. 1), which exceeds the GT\(_{ + }\) resonance energy in 56,56Fe.

  35.  For \(({{T}_{9}},\mathop {\log }\nolimits_{10} (\rho {{Y}_{{\text{e}}}})) = (10,7)\) a value of the chemical potential \({{\mu }_{{\text{e}}}}\) is much less than the energy of resonant transitions (see Fig. 1). However, the presence of high-energy electrons at the tail of the Fermi–Dirac distribution makes the resonance contribution decisive. The contribution of transitions with negative energy is quite significant due to the increased phase space of the outgoing neutrinos.

  36.  A similar method was used by Fuller et al. [64, 72, 71] to reproduce the contribution of low-energy GT\(_{ + }\) transitions to electron capture.

  37.  At the same time, both processes produce neutrinos, which then leave the star. Hence, an increase of the rates of \({{e}^{ - }}\)-capture and \({{\beta }^{ - }}\) decay relative to the LSSM results accelerates the loss of energy and reduces the entropy of matter.

  38.  For the rate of \({{e}^{ - }}\)-capture by nuclei of the iron group, Bruenn used a parametrization based on an estimate by Fuller et al. of the strength and energy of a single-particle GT\(_{ + }\) transition \(1{{f}_{{7/2}}} \to 1{{f}_{{5/2}}}\) [71].

  39.  The diagram of the single-particle levels of the 82Ge nucleus is given in Fig. 1 in [206] and is generally close to the scheme in Fig. 24 for 76Ge. In the independent particle model, protons occupy levels \(1{{f}_{{7/2}}}\) and \(2{{p}_{{3/2}}}\), while neutrons populate all levels up to \(1{{g}_{{9/2}}}\), inclusively. The unblocking of GT\(_{ + }\) transitions occurs both due to the transition of protons to higher levels, and due to the formation of neutron vacancies in the \(pf\)-shell.

  40. \(\sum B(G{{T}_{ + }}) = 0.7 \pm 0.2\) below the excitation energy of 5 MeV of the daughter nucleus.

  41. \(U = {{A{{T}^{2}}} \mathord{\left/ {\vphantom {{A{{T}^{2}}} 8}} \right. \kern-0em} 8} \approx 10\) MeV at \(T \approx 1\) MeV and \(A \approx 80\).

  42.  The RPA method with incomplete filling of single-particle levels is described in [210].

  43.  Nuclei with \(N \approx 82\) make a significant contribution to \({{e}^{ - }}\)-capture at high densities before bounce [221].

  44.  With this simplified consideration, the unperturbed wave function of the ground state of the nucleus has the form of the Slater determinant, instead of having a BCS vacuum structure.

  45. Note that the sequence of single-particle levels in Fig. 24 is close to that used in [206] to calculate the rates of electron capture by the 82Ge nucleus.

  46.  In [225], similar effects were considered in detail using the example of 80Ge.

  47.  Due to the smallness of the matrix elements of the residual particle–hole interaction between particle–particle and hole–hole states, considering TQRPA correlations does not lead to noticeable mixing of two-thermal-quasi-particle configurations.

  48.  According to our BCS calculations, in 82Ge and 86Kr there are 0.2 and 0.4 protons per level \(1g_{{9/2}}^{p}\), respectively.

  49.  According to Table 1 in [229], for a star with a mass \(15{{M}_{ \odot }}\), the core temperature is in the range \(1.0 \times {{10}^{{10}}}{\kern 1pt} - {\kern 1pt} 1.4 \times {{10}^{{10}}}\) K at densities \(\rho {{Y}_{e}} = 2.4 \times {{10}^{{10}}}{\kern 1pt} - {\kern 1pt} 2.3 \times {{10}^{{11}}}\,\,{\text{g/c}}{{{\text{m}}}^{3}}\).

REFERENCES

  1. A. A. Dzhioev and A. I. Vdovin, “Method of superoperators in the theory of hot nuclei and astrophysical applications. I. Spectral characteristics of hot nuclei,” Phys. Part. Nucl. 53, No. 5 (2022).

  2. H. A. Bethe, “Supernova mechanisms,” Rev. Mod. Phys. 62, 801–866 (1990).

    Article  ADS  Google Scholar 

  3. K. Langanke and G. Martínez-Pinedo, “Nuclear weak-interaction processes in stars,” Rev. Mod. Phys. 75, 819–862 (2003).

    Article  ADS  Google Scholar 

  4. H.-T. Janka, K. Langanke, A. Marek, et al., “Theory of core-collapse supernovae,” Phys. Rep. 442, 38—74 (2007).

    Article  ADS  Google Scholar 

  5. G. Martínez-Pinedo, M. Liebendorfer, and D. Frekers, “Nuclear input for core-collapse models,” Nucl. Phys. A 777, 395—423 (2006).

    Article  ADS  Google Scholar 

  6. Handbook of Supernovae, Ed. by P. Alsabti and P. Murdin (Springer, 2017).

    Google Scholar 

  7. G. G. Raffelt, Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles (Univ. Chicago Press, 1996).

  8. K. Langanke and G. Martínez-Pinedo, “The role of giant resonances in nuclear astrophysics: An overview,” Europ. Phys. J. A 55, 226 (2019).

    Article  ADS  Google Scholar 

  9. W. Hillebrandt and J. C. Niemeyer, “Type Ia supernova explosion models,” Ann. Rev. Astron. Astrophys. 38, 191—230 (2000).

    Article  ADS  Google Scholar 

  10. C. L. Fryer and M. S. Warren, “Modeling core-collapse supernovae in three dimensions,” Astrophys. J. Lett. 574, L65–L68 (2002).

    Article  ADS  Google Scholar 

  11. H.-T. Janka, T. Melson, and A. Summa, “Physics of core-collapse supernovae in three dimensions: A sneak preview,” Annu. Rev. Nucl. Part. Sci. 66, 341—375 (2016).

    Article  ADS  Google Scholar 

  12. K. Langanke, “Nuclear physics and core collapse supernovae,” Nucl. Phys. A 690, 29—40 (2001).

    Article  ADS  Google Scholar 

  13. M. Oertel, M. Hempel, T. Klähn, and S. Typel, “Equations of state for supernovae and compact stars,” Rev. Mod. Phys. 89, 15007 (2017).

    Article  ADS  Google Scholar 

  14. G. F. Burgio and A. F. Fantina, “Nuclear Equation of State for Compact Stars and Supernovae,” in The Physics and Astrophysics of Neutron Stars, Ed. by L. Rezzolla, P. Pizzochero, D. I. Jones, (Springer, 2018), pp. 255–335.

    Google Scholar 

  15. L. F. Roberts and S. Reddy, “Charged current neutrino interactions in hot and dense matter,” Phys. Rev. C 95, 45807 (2017).

    Article  ADS  Google Scholar 

  16. M. Oertel, A. Pascal, M. Mancini, and J. Novak, “Improved neutrino-nucleon interactions in dense and hot matter for numerical simulations,” Phys. Rev. 102, 35802 (2020).

    ADS  Google Scholar 

  17. G. Martínez-Pinedo, T. Fischer, A. Lohs, and L. Huther, “Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling,” Phys. Rev. Lett. 109, 251104 (2012).

    Article  ADS  Google Scholar 

  18. T. Fischer, G. Guo, A. A. Dzhioev, et al., “Neutrino signal from proto-neutron star evolution: Effects of opacities from charged-current–neutrino interactions and inverse neutron decay,” Phys. Rev. C 101, 025804 (2020).

    Article  ADS  Google Scholar 

  19. H. A. Bethe, G. E. Brown, J. Applegate, and J. M. Lattimer, “Equation of state in the gravitational collapse of stars,” Nucl. Phys. A 324, 487–533 (1979).

    Article  ADS  Google Scholar 

  20. G. E. Brown, H. A. Bethe, and G. Baym, “Supernova theory,” Nucl. Phys. A 375, 481—532 (1982).

    Article  ADS  Google Scholar 

  21. S. E. Woosley, A. Heger, and T. A. Weaver, “The evolution and explosion of massive stars,” Rev. Mod. Phys. 74, 1015—1071 (2002).

    Article  ADS  Google Scholar 

  22. K. Kotake, K. Sato, and K. Takahashi, “Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae,” Rep. Prog. Phys. 69, 971—1143 (2006).

    Article  ADS  Google Scholar 

  23. S. M. Couch, “The mechanism(s) of core-collapse supernovae,” Philos. Trans. R. Soc., A 375, 20160271 (2017).

  24. S. I. Blinnikov and D. Yu. Tsvetkov, “Supernovae” in Stars, Ed. by V. G. Surdin (Fizmatlit, Moscow, 2013), pp. 349—403 [in Russian].

    Google Scholar 

  25. S. E. Woosley and T. A. Weaver, “The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis,” Astrophys. J., Suppl. Ser. 101, 181 (1995).

    Article  ADS  Google Scholar 

  26. A. Heger, S. E. Woosley, G. Martínez-Pinedo, and K. Langanke, “Presupernova evolution with improved rates for weak interactions,” Astrophys. J. 560, 307 (2001).

    Article  ADS  Google Scholar 

  27. V. S. Imshennik and D. K. Nadezhin, “Thermodynamic properties of matter at high densities and temperatures,” Sov. Astron. 9, 896 (1966).

    ADS  Google Scholar 

  28. R. I. Epstein and W. D. Arnett, “Neutronization and thermal disintegration of dense stellar matter,” Astrophys. J. 201, 202—211 (1975).

    Article  ADS  Google Scholar 

  29. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, 1983; Mir, Moscow, 1985).

  30. R. I. Epstein and C. J. Pethick, “Lepton loss and entropy generation in stellar collapse,” Astrophys. J. 243, 1003—1012 (1981).

    Article  ADS  Google Scholar 

  31. B. Datta and P. P. Deo, “Lepton loss and entropy generation in stellar collapse,” Astrophys. Space Sci. 90, 109—115 (1983).

    Article  ADS  Google Scholar 

  32. P. Bonche and D. Vautherin, “A mean-field calculation of the equation of state of supernova matter,” Nucl. Phys. A 372, 496—526 (1981).

    Article  ADS  Google Scholar 

  33. D. Z. Freedman, “Coherent effects of a weak neutral current,” Phys. Rev. D 9, 1389—1392 (1974).

    Article  ADS  Google Scholar 

  34. D. K. Nadyozhin, “The gravitational collapse of iron-oxygen stars with masses of 2M and 10M,” Astrophys. Space Sci. 51, 283—301 (1977).

    Article  ADS  Google Scholar 

  35. W. D. Arnett, “Neutrino trapping during gravitational collapse of stars,” Astrophys. J. 218, 815—833 (1977).

    Article  ADS  Google Scholar 

  36. P. Goldreich and S. Weber, “Homologously collapsing stellar cores,” Astrophys. J. 238, 991—997 (1980).

    Article  ADS  Google Scholar 

  37. A. Yahil, “Self-similar stellar collapse,” Astrophys. J. 265, 1047—1055 (1983).

    Article  ADS  Google Scholar 

  38. K. van Riper, “Stellar core collapse. II. Inner core bounce and shock propagation,” Astrophys. J. 257, 793—820 (1982).

    Article  ADS  Google Scholar 

  39. S. A. Colgate and M. H. Johnson,” Hydrodynamic origin of cosmic rays,” Phys. Rev. Lett. 5, 235—238 (1960).

    Article  ADS  Google Scholar 

  40. S. I. Blinnikov, T. A. Lozinskaya, and N. N. Chugai, Theory of Supernova Explosions (Inst. Teor. Eksp. Fiziki, Moscow, 1986) [in Russian].

    Google Scholar 

  41. T. Foglizzo, “Explosion Physics of Core-Collapse Supernovae,” in Handbook of Supernovae, Ed. by A. W. Alsabti and P. Murdin (Springer, 2017), pp. 1053–1073.

    Google Scholar 

  42. A. Mezzacappa, “Ascertaining the core collapse supernova mechanism: the state of the art and the road ahead,” Rev. Nucl. Part. Sci. 55, 467—515 (2005).

    Article  ADS  Google Scholar 

  43. H.-T. Janka, “Explosion mechanisms of core-collapse supernovae,” Annu. Rev. Nucl. Part. Sci. 62, 407—451 (2012).

    Article  ADS  Google Scholar 

  44. H.-T. Janka, F. Hanke, L. Hüdepohl, et al.,“ Core-collapse supernovae: Reflections and directions,” Prog. Theor. Exp. Phys. 2012, 01A309 (2012).

  45. T. Foglizzo, R. Kazeroni, J. Guilet, et al., “The explosion mechanism of core-collapse supernovae: Progress in supernova theory and experiments,” Publ. Astron. Soc. Australia. 32, e009 (2015).

    Article  ADS  Google Scholar 

  46. J. R. Wilson, “Supernovae and Post-Collapse Behaviour,” in Numerical Astrophysics, Ed. by J. M. Centrella, J. M. LeBlanc, and R. L. Bowers (Jones and Barltett, Boston, MA, 1985), pp. 442–434.

    Google Scholar 

  47. H. A. Bethe and J. R. Wilson, “Revival of a stalled supernova shock by neutrino heating,” Astrophys. J. 295, 14—23 (1985).

    Article  ADS  Google Scholar 

  48. J. R. Wilson, R. Mayle, S. E. Woosley, and T. Weaver, “Stellar core collapse and supernova,” Ann. New York Acad. Sci. 470, 267—293 (1986).

    Article  ADS  Google Scholar 

  49. M. Rampp, R. Buras, H.-T. Janka, and G. Raffelt, “Core-Collapse Supernova Simulations: Variations of Input Physics,” in Nuclear Astrophysics, Ed. by W. Hillebrandt and E. Müller (2002), pp. 119–125.

    Google Scholar 

  50. B. M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, “On the neutrino mechanism of supernovae explosion,” Sov. Astron. Lett. 23, 30–36 (1997).

    Google Scholar 

  51. R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis, “Improved models of stellar core collapse and still no explosions: What is missing?,” Phys. Rev. Lett. 90, 241101 (2003).

    Article  ADS  Google Scholar 

  52. G. S. Bisnovatyi-Kogan, “The explosion of a rotating star as a supernova mechanism,” Sov. Astron. 14, 652 (1971).

    ADS  MathSciNet  Google Scholar 

  53. V. S. Imshennik, “A possible scenario of supernova explosion as a result of the gravitational collapse of a massive stellar core,” Sov. Astron. Lett. 18, 194 (1992).

    ADS  Google Scholar 

  54. V. S. Imshennik, “Explosion mechanism in supernovae collapse,” Space Sci. Rev. 74, 325—334 (1995).

    Article  ADS  Google Scholar 

  55. V. S. Imshennik and O. G. Ryazhskaya, “A rotating collapsar and possible interpretation of the LSD neutrino signal from SN1987A,” Astron. Lett. 30, 14–31 (2004).

    Article  ADS  Google Scholar 

  56. A. Burrows, E. Livne, L. Dessart, et al., “A new mechanism for core-collapse supernova explosions,” Astrophys. J. 640, 878—890 (2006).

    Article  ADS  Google Scholar 

  57. I. Sagert, T. Fischer, M. Hempel, et al., “Signals of the QCD phase transition in core-collapse supernovae,” Phys. Rev. Lett. 102, 081101 (2009).

    Article  ADS  Google Scholar 

  58. J. M. Blondin, A. Mezzacappa, and C. DeMarino, “Stability of standing accretion shocks, with an eye toward core-collapse supernovae,” Astrophys. J. 584, 971—980 (2003).

    Article  ADS  Google Scholar 

  59. T. A. Thompson, E. Quataert, and A. Burrows, “Viscosity and rotation in core-collapse supernovae,” Astrophys. J. 620, 861—877 (2005).

    Article  ADS  Google Scholar 

  60. G. Martínez-Pinedo, K. Langanke, and D. J. Dean, “Competition of electron capture and beta-decay rates in supernova collapse,” Astrophys. J. Suppl. Ser. 126, 493—499 (2000).

    Article  ADS  Google Scholar 

  61. K. Langanke, G. Martínez-Pinedo, and R. Zegers, “Electron capture in star,” Rep. Prog. Phys. 84, 066301 (2021).

    Article  ADS  Google Scholar 

  62. J. N. Bahcall, “Electron capture in stellar interiors,” Astrophys. J. 139, 318-337 (1964).

    Article  ADS  Google Scholar 

  63. K. Langanke and G. Martínez-Pinedo, “Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range A = 45–65 in supernovae environments,” Nucl. Phys. A 673, 481—508 (2000).

    Article  ADS  Google Scholar 

  64. G. Fuller, W. Fowler, and M. Newman, “Stellar weak-interaction rates for sd-shell nuclei. I. Nuclear matrix element systematics with application to 26Al and selected nuclei of importance to the supernova problem,” Astrophys. J. Supp. Ser. 42, 447—473 (1980).

    Article  ADS  Google Scholar 

  65. J. Cox and R. Giuli, Principles of Stellar Structure (Gordon and Breach, New York, 1968).

    Google Scholar 

  66. A. G. W. Cameron, “Photobeta reactions in stellar interiors,” Astrophys. J. 130, 452 (1959).

    Article  ADS  Google Scholar 

  67. W. A. Fowler and F. Hoyle, “Neutrino processes and pair formation in massive stars and supernovae,” Astrophys. J. Supp. Ser. 9, 201—319 (1964).

    Article  ADS  Google Scholar 

  68. C. J. Hansen, “Some weak interaction processes in highly evolved stars,” Astrophys. Space Sci. 1, 499—512 (1968).

    Article  ADS  Google Scholar 

  69. T. J. Mazurek, J. W. Truran, and A. G. Cameron, “Electron capture in carbon dwarf supernovae,” Astrophys. Space Sci. 27, 261—291 (1974).

    Article  ADS  Google Scholar 

  70. K. Takahashi, M. El Eid, and W. Hillebrandt, “Beta transition rates in hot and dense matter,” Astron. Astrophys. 67, 185—197 (1978).

    ADS  Google Scholar 

  71. G. M. Fuller, W. A. Fowler, and M. J. Newman, “Stellar weak interaction rates for intermediate-mass nuclei. II. A = 21 to A = 60,” Astrophys. J. 1982. Vol. 252. P. 715–740.

    Article  ADS  Google Scholar 

  72. G. M. Fuller, W. A. Fowler, and M. J. Newman, “Stellar weak interaction rates for intermediate mass nuclei. III. Rate tables for the free nucleons and nuclei with A = 21 to A = 60,” Astrophys. J. Supp. Ser. 48, 279—319 (1982).

    Article  ADS  Google Scholar 

  73. T. A. Weaver, S. E. Woosley, and G. M. Fuller, “Electron capture and the final evolution of massive stars,” in Numerical Astrophysics, Ed. by J. M. Centrall, J. M. LeBlanc, and R. L. Bowers (Jones and Bartlett, Boston, MA, 1985), pp. 374.

    Google Scholar 

  74. A. Bohr and B. R. Mottelson, Nuclear Structure (World Scientific; Mir, Moscow, 1971).

  75. H. A. Bethe, “Nuclear physics B. Nuclear dynamics, theoretical,” Rev. Mod. Phys. 9, 69—244 (1937).

    Article  ADS  MATH  Google Scholar 

  76. A. Gilbert and A. Cameron, “A composite nuclear-level density formula with shell corrections,” Canad. J. Phys. 43, 1446 (1965).

    Article  ADS  Google Scholar 

  77. D. M. Brink, PhD Thesis (Univ. Oxford, 1955).

  78. M. B. Aufderheide, I. Fushiki, S. E. Woosley, and D. H. Hartmann, “Search for important weak interaction nuclei in presupernova evolution,” Astrophys. J. Supp. Ser. 91, 389 (1994).

    Article  ADS  Google Scholar 

  79. C. M. Lederer and V. S. Shirley, Table of Isotopes, 7th ed. (Wiley, New York, 1978).

    Google Scholar 

  80. S. D. Bloom and G. M. Fuller, “Gamow–Teller electron capture strength distributions in stars: Unblocked iron and nickel isotopes,” Nucl. Phys. A 440, 511—530 (1985.

    Article  ADS  Google Scholar 

  81. K. Muto, “The ΔT z = +1 Gamow–Teller excitation of N = 28 isotones,” Nucl. Phys. A 451, 481—497 (1986).

    Article  Google Scholar 

  82. F. Osterfeld, “Nuclear spin and isospin excitations,” Rev. Mod. Phys. 64, 491—557 (1992).

    Article  ADS  Google Scholar 

  83. Y. Fujita, B. Rubio, and W. Gelletly, “Spin-isospin excitations probed by strong, weak and electro-magnetic interactions,” Prog. Part. Nucl. Phys. 66, 549—606 (2011).

    Article  ADS  Google Scholar 

  84. T. N. Taddeucci, C. A. Goulding, T. A. Carey, et al., “The (p, n) reaction as a probe of beta decay strength,” Nucl. Phys. A 469, 125—172 (1987).

    Article  ADS  Google Scholar 

  85. F. P. Brady, C. M. Castaneda, G. A. Needham, et al., “Isovector and Gamow–Teller strength from small-angle (n, p) reactions at 60 MeV,” Phys. Rev. Lett. 48, 860—863 (1982).

    Article  ADS  Google Scholar 

  86. E. Caurier, K. Langanke, G. Martínez-Pinedo, and F. Nowacki, “Shell-model calculations of stellar weak interaction rates. I. Gamow–Teller distributions and spectra of nuclei in the mass range A = 45–65,” Nucl. Phys. A 653, 439—452 (1999).

    Article  ADS  Google Scholar 

  87. M. C. Vetterli, O. Hausser, R. Abegg, et al., “Gamow–Teller strength deduced from charge exchange reactions on 54Fe at 300 MeV,” Phys. Rev. C 40, 559—569 (1989).

    Article  ADS  Google Scholar 

  88. C. Gaarde, “Gamow–Teller and M1 resonances,” Nucl. Phys. A 396, 127—144 (1983).

    Article  ADS  Google Scholar 

  89. G. F. Bertsch and H. Esbensen, “The (p,n) reaction and the nucleon–nucleon force,” Rep. Prog. Phys. 50, 607—654 (1987).

    Article  ADS  Google Scholar 

  90. G. Fuller, W. Fowler, and M. Newman, “Stellar weak interaction rates for intermediate mass nuclei. IV. Interpolation procedures for rapidly varying lepton capture rates using effective log(ft)-values,” Astrophys. J. 293, 1—16 (1985).

    Article  ADS  Google Scholar 

  91. B. A. Brown and B. H. Wildenthal, “Status of the nuclear shell model,” Annu. Rev. Nucl. Part. Sci. 38, 29–66 (1988).

    Article  ADS  Google Scholar 

  92. T. Oda, M. Hino, K. Muto, et al., “Rate tables for the weak processes of sd-shell nuclei in stellar matter,” At. Data Nucl. Data Tables. 56, 231—403 (1994).

    Article  ADS  Google Scholar 

  93. M. B. Aufderheide, S. D. Bloom, D. A. Resler, and G. J. Mathews, “Implications of the recent 59Co(np)59Fe experiment for stellar electron capture rates,” Phys. Rev. C 47, 2961—2969 (1993).

    Article  ADS  Google Scholar 

  94. M. B. Aufderheide, “Stellar electron capture rates and the 54Fe(n, p) experiment,” Nucl. Phys. A 526, 161—187 (1991).

    Article  ADS  Google Scholar 

  95. M. B. Aufderheide, S. D. Bloom, D. A. Resler, and G. J. Mathews, “Shell-model calculations of Gamow–Teller strength in 51V, 54Fe, and 59Co,” Phys. Rev. C 48, 1677—1685 (1993).

    Article  ADS  Google Scholar 

  96. M. B. Aufderheide, S. D. Bloom, G. J. Mathews, and D. A. Resler, “Importance of (n, p) reactions for stellar beta decay rates,” Phys. Rev. C 53, 3139—3142 (1996).

    Article  ADS  Google Scholar 

  97. S. E. Koonin, D. J. Dean, and K. Langanke, “Shell model Monte Carlo methods,” Phys. Rep. 278, 1—77 (1997).

    Article  ADS  Google Scholar 

  98. A. Poves and A. Zuker, “Theoretical spectroscopy and the fp shell,” Phys. Rep. 70, 235—314 (1981).

    Article  ADS  Google Scholar 

  99. P. B. Radha, D. J. Dean, S. E. Koonin, et al., “Gamow–Teller strength distributions in fp-shell nuclei,” Phys. Rev. C 56, 3079—3086 (1997).

    Article  ADS  Google Scholar 

  100. D. J. Dean, K. Langanke, L. Chatterjee, et al., “Electron capture on iron group nuclei,” Phys. Rev. C 58, 536—544 (1998).

    Article  ADS  Google Scholar 

  101. E. Caurier and F. Nowacki, “Present status of shell model techniques,” Acta Phys. Polonica B 30, 705—714 (1999).

    ADS  Google Scholar 

  102. E. Caurier, G. Martínez-Pinedo, F. Nowacki, et al., “The shell model as a unified view of nuclear structure,” Rev. Mod. Phys. 77, 427—488 (2005).

    Article  ADS  Google Scholar 

  103. G. Martínez-Pinedo, A. Poves, E. Caurier, and A. P. Zuker, “Effective g A in the pf shell,” Phys. Rev. C 53, R2602–R2605 (1996).

    Article  ADS  Google Scholar 

  104. Y. Fujita, H. Fujita, T. Adachi, et al., “Gamow-Teller transitions from 58Ni to discrete states of 58Cu. The study of isospin symmetry in atomic nuclei,” Eur. Phys. J. A 13, 411-418 (2002).

    ADS  Google Scholar 

  105. D. Frekers, “Facets of charge-exchange reactions – from astrophysics to double beta decay,” Prog. Part. Nucl. Phys. 57, 217–225 (2006).

    Article  ADS  Google Scholar 

  106. C. Bäumer, A. M. van den Berg, B. Davids, et al., “High-resolution study of the Gamow–Teller strength distribution in 51Ti measured through 51V(d,2He)51Ti,” Phys. Rev. C 68, 31303 (2003).

    Article  ADS  Google Scholar 

  107. K. Langanke and G. Martínez-Pinedo, “Supernova electron capture rates on odd-odd nuclei,” Phys. Lett. B 453, 187—193 (1999).

    Article  ADS  Google Scholar 

  108. K. Langanke and G. Martínez-Pinedo, “Supernova electron capture rates for 55Co and 56Ni,” Phys. Lett. B 436, 19—24 (1998).

    Article  ADS  Google Scholar 

  109. K. Langanke and G. Martínez-Pinedo, “Rate tables for the weak processes of pf-shell nuclei in stellar environments,” At. Data Nucl. Data Tables. 79, 1—46 (2001).

    Article  ADS  Google Scholar 

  110. A. Heger, K. Langanke, G. Martínez-Pinedo, and S. E. Woosley, “Presupernova collapse models with improved weak-interaction rates,” Phys. Rev. Lett. 86, 1678–1681 (2001).

    Article  ADS  Google Scholar 

  111. D. Santonocito and Y. Blumenfeld, “Evolution of the giant dipole resonance properties with excitation energy,” Europ. Phys. J. A 30, 183—202 (2006).

    Article  ADS  Google Scholar 

  112. C. T. Angell, S. L. Hammond, H. J. Karwowski, et al., “Evidence for radiative coupling of the pygmy dipole resonance to excited states,” Phys. Rev. C 86, 51302 (2012).

    Article  ADS  Google Scholar 

  113. G. W. Misch, G. M. Fuller, and B. A. Brown, “Modification of the Brink–Axel hypothesis for high-temperature nuclear weak interactions,” Phys. Rev. C 90, 65808 (2014).

    Article  ADS  Google Scholar 

  114. N. Paar, G. Colò, E. Khan, and D. Vretenar, “Calculation of stellar electron-capture cross sections on nuclei based on microscopic Skyrme functionals,” Phys. Rev. C 80, 055801 (2009).

    Article  ADS  Google Scholar 

  115. A. F. Fantina, E. Khan, G. Colò, et al., “Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional,” Phys. Rev. C 86, 035805 (2012).

    Article  ADS  Google Scholar 

  116. Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, “Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation,” Phys. Rev. C 83, 45807 (2011).

    Article  ADS  Google Scholar 

  117. K. G. Balasi, K. Langanke, and G. Martínez-Pinedo, “Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis,” Prog. Part. Nucl. Phys. 85, 33—81 (2015).

    Article  ADS  Google Scholar 

  118. V. G. Solovyev, Theory of Atomic Nucleus: Quasi-particles and Phonons (Energoatomizdat, Moscow, 1989; CRC Press, 2019).

    Google Scholar 

  119. V. V. Voronov and V. G. Solovyev, “Quasi-particle-phonon nuclear model. IV. Fragmentation of single-phonon and two-quasi-particle states in spherical nuclei,” Fiz. Elem. Chastits Atom. Yadra 14, 1380—1442 (1983).

    Google Scholar 

  120. A. I. Vdovin, V. V. Voronov, V. G. Solovyev, and Ch. Stoyanov Ch., “Quasi-particle-phonon nuclear model. V. Odd spherical nuclei,” Sov. J. Part. Nucl. 16, 245—279 (1985).

    Google Scholar 

  121. A. I. Vdovin and V. G. Solovyev, “Quasi-particle-phonon nuclear model. III. Single-photon state in spherical nuclei,” Fiz. Elem. Chastits At. Yadra 14, 237—285 (1983).

    Google Scholar 

  122. V. A. Kuz’min and V. G. Solovyev, “Description of giant resonances in spherical nuclei,” Yad. Fiz. 35, 620—62 (1982).

    Google Scholar 

  123. V. A. Kuz’min, “High-lying Gamow-Teller states in spherical nuclei,” Phys. Atom. Nucl. 58, 3 (1995).

    Google Scholar 

  124. V. A. Chepurnov, “Mean field of neutrons and protons. Shells with N > 126 and Z > 82,” Yad. Fiz. 6, 955—960 (1967).

    Google Scholar 

  125. K. Pomorski, P. Ring, G. Lalazissis, et al., “Ground state properties of the 훽 stable nuclei in various mean field theorie,” Nucl. Phys. A 624, 349—369 (1997).

    Article  ADS  Google Scholar 

  126. G. Audi, A. Wapstra, and C. Thibault, “The Ame2003 atomic mass evaluation: (II). Tables, graphs and references,” Nucl. Phys. A 729, 337–676 (2003).

    Article  ADS  Google Scholar 

  127. M. Kh. Gizzatkulov, I. V. Puzynin, and R. M. Yamaleev, “Program and method of solution of the radial Schrödinger equation with a spherically symmetric potential,” Preprint OIYaI P11-10029 (JINR, Dubna, 1976).

    Google Scholar 

  128. O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, and A. V. Izotova, “Neutron subshells of even-even Fe nuclei,” Bull. Russ. Acad. Sci. 69, 137—140 (2005).

    Google Scholar 

  129. O. V. Bespalova, I. N. Boboshin, and V. V. Varlamov, “Proton subshells of even-even Fe nuclei,” Bull. Russ. Acad. Sci. Physics 69, 763—765 (2005).

    Google Scholar 

  130. B. Castel and I. Hamamoto, “Giant spin resonances and effective Mλ g-factors,” Phys. Lett. B 65, 27—30 (1976).

    Article  ADS  Google Scholar 

  131. D. R. Bes, R. A. Broglia, and B. S. Nilsson, “Microscopic description of isoscalar and isovector giant quadrupole resonances,” Phys. Rep. 16, 1–56 (1975).

    Article  ADS  Google Scholar 

  132. T. Rönnqvist, H. Condé, N. Olsson, et al., “The 54,56Fe(n,p)54,56Mn reactions at E n = 97 MeV,” Nucl. Phys. A 563, 225—246 (1993).

    Article  ADS  Google Scholar 

  133. S. El-Kateb, K. P. Jackson, W. P. Alford, et al., “Spin-isospin strength distributions for fp shell nuclei: Results for the 55Mn(n,p), 56Fe(n,p), and 58Ni(n,p) reactions at 198 MeV,” Phys. Rev. C 49, 3128—3136 (1994).

    Article  ADS  Google Scholar 

  134. J. Rapaport, T. Taddeucci, T. P. Welch, et al., “Excitation of giant spin-isospin multipole vibrations in 54,56Fe and 58,60Ni,” Nucl. Phys. A 410, 371—398 (1983).

    Article  ADS  Google Scholar 

  135. J. W. Norbury, M. N. Thompson, K. Shoda, and H. Tsubota, “Photoneutron cross section of 54Fe,” Austral. J. Phys. 31, 471—476 (1978).

    Article  ADS  Google Scholar 

  136. T. J. Bowles, R. J. Holt, H. E. Jackson, et al., “Photon scattering studies of the giant dipole resonance in medium weight nuclei,” Phys. Rev. C 24, 1940—1951 (1981).

    Article  ADS  Google Scholar 

  137. D. F. Petersen and C. J. Veje, “Collective 1 excitations involving a charge exchange,” Phys. Lett. B 24, 449–453 (1967).

    Article  ADS  Google Scholar 

  138. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, and J. Wambach, “Gamow–Teller resonance in hot nuclei and astrophysical applications,” Bull. Russ. Acad. Sci.: Phys. 72, 269–273 (2008).

    Article  Google Scholar 

  139. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, et al., “Gamow–Teller strength distributions at finite temperatures and electron capture in stellar environments,” Phys. Rev. C 81, 015804 (2010).

    Article  ADS  Google Scholar 

  140. B. D. Anderson, C. Lebo, A. R. Baldwin, et al., “Gamow–Teller strength in the 54Fe(p, n)54Co reaction at 135 MeV,” Phys. Rev. C 41, 1474—1485 (1990).

    Article  ADS  Google Scholar 

  141. V. A. Kuz’min and V. G. Solovyev, “Gamow–Teller β+ decays and strength functions of (n, p) transitions in spherical nuclei,” Nucl. Phys. A 486, 118—132 (1988).

    Article  ADS  Google Scholar 

  142. P. Sarriguren, E. Moya de Guerra, and R. Alvarez-Rodrigues, “Gamow–Teller strength distributions in Fe and Ni stable isotopes,” Nucl. Phys. A 716, 230—244 (2003).

    Article  ADS  Google Scholar 

  143. Y. F. Niu, G. Colò, M. Brenna, et al., “Gamow–Teller response within Skyrme random-phase approximation plus particle-vibration coupling,” Phys. Rev. C 85, 034314 (2012).

    Article  ADS  Google Scholar 

  144. M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, “Gamow–Teller strength and the spin-isospin coupling constants of the Skyrme energy functional,” Phys. Rev. C 65, 054322 (2002).

    Article  ADS  Google Scholar 

  145. N. Paar, T. Nikšič, D. Vretenar, and P. Ring, “Quasi-particle random phase approximation based on the relativistic Hartree–Bogoliubov model. II. Nuclear spin and isospin excitations,” Phys. Rev. C 69, 054303 (2004).

    Article  ADS  Google Scholar 

  146. N. Auerbach, G. F. Bertsch, B. A. Brown, and L. Zhao, “β+ Gamow–Teller strength in nuclei,” Nucl. Phys. A 556, 190—200 (1993).

    Article  ADS  Google Scholar 

  147. E. Caurier, A. P. Zuker, A. Poves, and G. Martínez-Pinedo, “Full pf shell model study of A = 48 nuclei,” Phys. Rev. C 50, 225—236 (1994).

    Article  ADS  Google Scholar 

  148. K. Langanke, D. J. Dean, P. B. Radha, et al., “Shell-model Monte Carlo studies of fp-shell nuclei,” Phys. Rev. C 52, 718—725 (1995).

    Article  ADS  Google Scholar 

  149. J. T. Suhonen, “Value of the axial-vector coupling strength in β and ββ decays: A review,” Frontiers in Phys. 5, 55 (2017).

    Article  ADS  Google Scholar 

  150. G. F. Bertsch and I. Hamamoto, “Gamow–Teller strength at high excitations,” Phys. Rev. C 26, 1323—1326 (1982).

    Article  ADS  Google Scholar 

  151. K. Grotz, H. V. Klapdor, and J. Metzinger, “The quenching of low-energetic nuclear Gamow–Teller strength by Δ-excitations,” Phys. Lett. B 132, 22—26 (1983).

    Article  ADS  Google Scholar 

  152. M. Rho, “Pion interactions within nuclei,” Annu. Rev. Nucl. Part. Sci. 34, 531—582 (1984).

    Article  ADS  Google Scholar 

  153. T. Wakasa, H. Sakai, H. Okamura, et al., “Gamow-Teller strength of 90Nb in the continuum studied via multipole decomposition analysis of the 90Zr(p,n) reaction at 295 MeV,” Phys. Rev. C 55, 2909—2922 (1997).

    Article  ADS  Google Scholar 

  154. K. Yako, H. Sakai, M. Greenfield, et al., “Determination of the Gamow–Teller quenching factor from charge exchange reactions on 90Zr,” Phys. Lett. B 615, 193–199 (2005).

    Article  ADS  Google Scholar 

  155. S. Drozdz, V. Klemt, J. Speth, and J. Wambach, “Giant Gamow–Teller resonances in nuclei described with realistic two-body interactions,” Phys. Lett. B 166, 18–22 (1986).

    Article  ADS  Google Scholar 

  156. V. A. Kuz’min and V. G. Soloviev, “Fragmentation of the Gamow–Teller resonance in spherical nuclei,” J. Phys. G 10, 1507–1522 (1984).

    ADS  Google Scholar 

  157. H. Sagawa and G. Colò, “Tensor interaction in mean-field and density functional theory approaches to nuclear structure,” Prog. Part. Nucl. Phys. 76, 76–115 (2014).

    Article  ADS  Google Scholar 

  158. L.-G. Cao, S.-S. Zhang, and H. Sagawa, “Quenching factor of Gamow–Teller and spin dipole giant resonances,” Phys. Rev. C 100, 054324 (2019).

    Article  ADS  Google Scholar 

  159. T. Lesinski, M. Bender, K. Bennaceur, et al., “Tensor part of the Skyrme energy density functional: Spherical nuclei,” Phys. Rev. C 76, 014312 (2007).

    Article  ADS  Google Scholar 

  160. A. Juodagalvis, K. Langanke, G. Martínez-Pinedo, et al., “Neutral-current neutrino-nucleus cross sections forA ∼ 50–65 nuclei,” Nucl. Phys. A 747, 87—108 (2005).

    Article  ADS  Google Scholar 

  161. J. M. Sampaio, K. Langanke, and G. Martínez-Pinedo, “Neutrino absorption cross sections in the supernova environment,” Phys. Lett. B 511, 11—18 (2001).

    Article  ADS  Google Scholar 

  162. A. A. Dzhioev, A. I. Vdovin, G. Martínez-Pinedo, et al., “Thermal quasi-particle random-phase approximation with Skyrme interactions and supernova neutral current neutrino-nucleus reaction,” Phys. Rev. C 94, 015805 (2016).

    Article  ADS  Google Scholar 

  163. A. A. Dzhioev, A. I. Vdovin, and Ch. Stoyanov, “The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment,” Phys. Atom. Nuclei. 79, 1019—1029 (2016).

    Article  ADS  Google Scholar 

  164. A. A. Dzhioev, A. I. Vdovin, and Ch. Stoyanov, “Thermal quasi-particle random-phase approximation calculations of stellar electron capture rates with the Skyrme effective interaction,” Phys. Rev. C 100, 025801 (2019).

    Article  ADS  Google Scholar 

  165. S. Goriely, N. Chamel, and J. M. Pearson, “Hartree–Fock–Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals,” Phys. Rev. C 88, 61302 (2013).

    Article  ADS  Google Scholar 

  166. M. T. Mustonen and J. Engel, “Global description of β decay in even-even nuclei with the axially-deformed Skyrme finite-amplitude method,” Phys. Rev. C 93, 14304 (2016).

    Article  ADS  Google Scholar 

  167. E. M. Ney, J. Engel, T. Li, and N. Schunck, “Global description of β decay with the axially deformed Skyrme finite-amplitude method: Extension to odd-mass and odd-odd nuclei,” Phys. Rev. C 102, 34326 (2020).

    Article  ADS  Google Scholar 

  168. P. Vesely, J. Kvasil, V. O. Nesterenko, et al., “Skyrme random-phase-approximation description of spin-flip M1 giant resonance,” Phys. Rev. C 80, 31302 (2009).

    Article  ADS  Google Scholar 

  169. D. Gambacurta and M. Grasso, “Second RPA calculations with the Skyrme and Gogny interactions,” Eur. Phys. J. A 52, 198 (2016).

    Article  ADS  Google Scholar 

  170. V. Tselyaev, N. Lyutorovich, J. Speth, et al., “Application of an extended random phase approximation to giant resonances in light-, medium-, and heavy-mass nuclei,” Phys. Rev. C 94, 34306 (2016).

    Article  ADS  Google Scholar 

  171. X. Roca-Maza, G. Colò, and H. Sagawa, “New Skyrme interaction with improved spin-isospin properties,” Phys. Rev. C 86, 031306 (2012).

    Article  ADS  Google Scholar 

  172. P. Wen, L. -G. Cao, J. Margueron, and H. Sagawa, “Spin-isospin response in finite nuclei from an extended Skyrme interaction,” Phys. Rev. C 89, 44311 (2014).

    Article  ADS  Google Scholar 

  173. H. Sagawa and G. F. Bertsch, “Self-consistent calculations of finite temperature nuclear response function,” Phys. Lett. B 146, 138—142 (1984).

    Article  ADS  Google Scholar 

  174. E. Khan, N. Van Giai, and M. Grasso, “Collective motions in hot exotic nuclei: The finite temperature continuum QRPA,” Nucl. Phys. A 731, 311—316 (2004).

    Article  ADS  Google Scholar 

  175. E. Yüksel, G. Colò, E. Khan, et al., “Multipole excitations in hot nuclei within the finite temperature quasi-particle random phase approximation framework,” Phys. Rev. C 96, 024303 (2017).

    Article  ADS  Google Scholar 

  176. E. Yüksel, G. Colò, E. Khan, and Y. F. Niu, “Nuclear excitations within microscopic EDF approaches: Pairing and temperature effects on the dipole response,” Europ. Phys. J. A 55, 230 (2019).

    Article  ADS  Google Scholar 

  177. T. H. R. Skyrme, “CVII. The nuclear surface,” Philos. Mag. 1, 1043—1054 (1956).

    Article  ADS  MATH  Google Scholar 

  178. T. H. R. Skyrme, “The effective nuclear potential,” Nucl. Phys. 9, 615–634 (1958).

    Article  MATH  Google Scholar 

  179. D. Vautherin and D. M. Brink, “Hartree–Fock calculations with Skyrme’s interaction,” Phys. Lett. B 32, 149–153 (1970).

    Article  ADS  Google Scholar 

  180. D. Vautherin and D. M. Brink, “Hartree–Fock calculations with Skyrme’s interaction. I. Spherical nuclei,” Phys. Rev. C 5, 626–647 (1972).

    Article  ADS  Google Scholar 

  181. M. Bender, P.-H. Heenen, and P.-G. Reinhard, “Self-consistent mean-field models for nuclear structure,” Rev. Mod. Phys. 75, 121—180 (2003).

    Article  ADS  Google Scholar 

  182. J. R. Stone and P.-G. Reinhard, “The Skyrme interaction in finite nuclei and nuclear matter,” Prog. Part. Nucl. Phys. 58, 587—657 (2007).

    Article  ADS  Google Scholar 

  183. M. Dutra, O. Lourenço, J. S. Sá Martins, et al., “Skyrme interaction and nuclear matter constraints,” Phys. Rev. C 85, 035201 (2012).

    Article  ADS  Google Scholar 

  184. E. Chabanat, P. Bonche, P. Haensel, et al., “A Skyrme parametrization from sub-nuclear to neutron star densities Part II. Nuclei far from stabilities,” Nucl. Phys. A 635, 231–256 (1998).

    Article  ADS  Google Scholar 

  185. N. V. Giai and H. Sagawa, “Spin-isospin and pairing properties of modified Skyrme interactions,” Phys. Lett. B 106, 379—382 (1981).

    Article  ADS  Google Scholar 

  186. J. Bartel, P. Quentin, M. Brack, et al., “Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM forces,” Nucl. Phys. A 386, 79—100 (1982).

    Article  ADS  Google Scholar 

  187. P.-G. Reinhard, D. J. Dean, W. Nazarewicz, et al., “Shape coexistence and the effective nucleon–nucleon interaction,” Phys. Rev. C 60, 014316 (1999).

    Article  ADS  Google Scholar 

  188. G. Colò, L. Cao, N. Van Giai, and L. Capelli, “Self-consistent RPA calculations with Skyrme-type interactions: The Skyrme_rpa program,” Comput. Phys. Commun. 184, 142—161 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  189. N. V. Giai, Ch. Stoyanov, and V. V. Voronov, “Finite rank approximation for random phase approximation calculations with Skyrme interactions: An application to Ar isotopes,” Phys. Rev. C 57, 1204—1209 (1998).

    Article  ADS  Google Scholar 

  190. A. P. Severyukhin, Ch. Stoyanov, V. V. Voronov, and N. V. Giai, “Quasi-particle random phase approximation with finite rank approximation for Skyrme interactions,” Phys. Rev. C 66, 34304 (2002).

    Article  ADS  Google Scholar 

  191. G. F. Bertsch and S. F. Tsai, “A study of the nuclear response function,” Phys. Rep. 18, 125—158 (1975).

    Article  ADS  Google Scholar 

  192. S. Krewald, V. Klemt, J. Speth, and A. Faessler, “On the use of Skyrme forces in self-consistent RPA calculations,” Nucl. Phys. A 281, 166—206 (1977).

    Article  ADS  Google Scholar 

  193. A. P. Severyukhin, V. V. Voronov, and N. V. Giai, “A separable approximation for Skyrme interactions and charge-exchange excitations,” J. Phys.: Conf. Ser. 267, 012025 (2011).

    MATH  Google Scholar 

  194. J. M. Sampaio, K. Langanke, G. Martínez-Pinedo, and D. J. Dean, “Neutral-current neutrino reactions in the supernova environment,” Phys. Lett. B 529, 19—25 (2002).

    Article  ADS  Google Scholar 

  195. H. Junde, H. Su, and Y. Dong, “Nuclear data sheets for A = 56,” Nucl. Data Sheets 112, 1513—1645 (2011).

    Article  ADS  Google Scholar 

  196. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, and J. Wambach, “Thermal effects on neutrino-nucleus inelastic scattering in stellar environments,” Phys. Atom. Nuclei 74, 1162 (2011).

    Article  ADS  Google Scholar 

  197. A. A. Dzhioev, “Gamow-Teller transitions in hot nuclei and astrophysical applications,” in Proceedings of the Twelfth Scientific Conference of JINR’s Young Scientists and Specialists (JINR, Dubna, 2008), pp. 114–117.

  198. A. A. Dzhioev, A. I. Vdovin, V. Y. Ponomarev, et al., “Gamow–Teller strength distributions at finite temperature and electron capture in stellar environments,” in Proceedings of 11th Symposium on Nuclei in the Cosmos PoS(NIC XI) (2011), Vol. 100, p. 28.

  199. A. I. Vdovin, A. A. Dzhioev, V. Y. Ponomarev, and J. Wambach, “Gamow–Teller transitions in hot nuclei,” Nucl. Theory. 26, 23–33 (2007).

    Google Scholar 

  200. A. I. Vdovin, A. A. Dzhioev, V. Y. Ponomarev, and J. Wambach, “Beta-decay and electron capture rates for hot nuclei,” in Proceedings of the 2nd International Conference on Current Problems in Nuclear Physics and Atomic Energy (NPAE-Kyiv 2008) (2009), pp. 87–95.

  201. A. A. Dzhioev, A. I. Vdovin, V. Y. Ponomarev, and J. Wambach, “Gamow–Teller transitions in hot nuclei and astrophysical applications,” BgNS Trans. 13, 47—55 (2009)

    Google Scholar 

  202. A. P. Severyukhin, V. V. Voronov, Ch. Stoyanov, and N. V. Giai, “Nuclear structure calculations with a separable approximation for Skyrme interactions,” Nucl. Phys. A 722, C123–C128 (2003).

    Article  ADS  Google Scholar 

  203. G. Fuller, “Neutron shell blocking of electron capture during gravitational collapse,” Astrophys. J. 252, 741—764 (1982).

    Article  ADS  Google Scholar 

  204. S. W. Bruenn, “Stellar core collapse—Numerical model and infall epoch,” Astrophys. J. Supp. Ser. 58, 771–841 (1985).

    Article  ADS  Google Scholar 

  205. G. Martínez-Pinedo, “Selected topics in nuclear astrophysics,” Europ. Phys. J. Special Topics 156, 123–149 (2008).

    Article  ADS  Google Scholar 

  206. J. Cooperstein and J. Wambach, “Electron capture in stellar collapse,” Nucl. Phys. A 420, 591—620 (1984).

    Article  ADS  Google Scholar 

  207. E.-W. Grewe, C. Bäumer, H. Dohmann, et al., “The (d, 2He) reaction on Se 76 and the double-β-decay matrix elements for A = 76,” Phys. Rev. C 78, 044301 (2008).

    Article  ADS  Google Scholar 

  208. Q. Zhi, K. Langanke, G. Martínez-Pinedo, et al., “The 76Se Gamow–Teller strength distribution and its importance for stellar electron capture rates,” Nucl. Phys. A 859, 172 (2011).

    Article  ADS  Google Scholar 

  209. K. Langanke, E. Kolbe, and D. J. Dean, “Unblocking of the Gamow–Teller strength in stellar electron capture on neutron-rich germanium isotopes,” Phys. Rev. C 63, 032801 (2001).

    Article  ADS  Google Scholar 

  210. E. Kolbe, K. Langanke, and P. Vogel, “Weak reactions on 12C within the continuum random phase approximation with partial occupancies,” Nucl. Phys. A 652, 91–100 (1999).

    Article  ADS  Google Scholar 

  211. K. Langanke, G. Martínez-Pinedo, J. M. Sampaio, et al., “Electron capture rates on nuclei and implications for stellar core collapse,” Phys. Rev. Lett. 90, 241102 (2003).

    Article  ADS  Google Scholar 

  212. A. Juodagalvis, J. M. Sampaio, K. Langanke, and W. R. Hix, “Extended pool of electron-capture rates for core-collapse supernovae simulations,” J. Phys. G 35, 014031 (2008).

    Article  ADS  Google Scholar 

  213. W. R. Hix, O. E. B. Messer, A. Mezzacappa, et al., “Consequences of nuclear electron capture in core collapse supernovae,” Phys. Rev. Lett. 91, 201102 (2003).

    Article  ADS  Google Scholar 

  214. C. Sullivan, E. O’Connor, R. G. T. Zegers, et al., “The sensitivity of core-collapse supernovae to nuclear electron capture,” Astrophys. J. 816, 44 (2016).

    Article  ADS  Google Scholar 

  215. A. Raduta, F. Gulminelli, and M. Oertel, “Modification of magicity toward the dripline and its impact on electron-capture rates for stellar core collapse,” Phys. Rev. C 93, 025803 (2016).

    Article  ADS  Google Scholar 

  216. S. Furusawa, H. Nagakura, K. Sumiyoshi, et al., “Dependence of weak interaction rates on the nuclear composition during stellar core collapse,” Phys. Rev. C 95, 025809 (2017).

    Article  ADS  Google Scholar 

  217. A. R. Raduta, F. Gulminelli, and M. Oertel, “Stellar electron capture rates on neutron-rich nuclei and their impact on stellar core collapse,” Phys. Rev. C 95, 025805 (2017).

    Article  ADS  Google Scholar 

  218. A. V. Yudin, M. Hempel, S. I. Blinnikov, et al., “Asymmetric nuclear light clusters in supernova matter,” Mon. Not. R. Astron. Soc. 483, 5426-5433 (2019).

    Article  ADS  Google Scholar 

  219. H. Nagakura, S. Furusawa, H. Togashi, et al., “Comparing treatments of weak reactions with nuclei in simulations of core-collapse supernovae,” Astrophys. J. Supp. Ser. 240, 38 (2019).

    Article  ADS  Google Scholar 

  220. A. Pascal, S. Giraud, A. F. Fantina, et al., “Impact of electron capture rates for nuclei far from stability on core-collapse supernovae,” Phys. Rev. C 101, 015803 (2020).

    Article  ADS  Google Scholar 

  221. R. Titus, C. Sullivan, R. G. T. Zegers, et al., “Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae,” J. Phys. G 45, 014004 (2018).

    Article  ADS  Google Scholar 

  222. R. Titus, E. M. Ney, R. G. T. Zegers, et al., “Constraints for stellar electron-capture rates on 86Kr via the 86Kr(t,3He+γ)86Br reaction and the implications for core-collapse supernovae,” Phys. Rev. C 100, 04580 (2019).

    Article  Google Scholar 

  223. J. C. Zamora, R. G. T. Zegers, S. M. Austin, et al., “Experimental constraint on stellar electron-capture rates from the 88Sr(t,3He+γ) 88Rb reaction at 115 MeV/u,” Phys. Rev. C 100, 032801(R) (2019)

  224. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, and J. Wambach, “Thermal effects on electron capture for neutron-rich nuclei,” Bull. Russ. Acad. Sci.: Physics 73, 225–229 (2009)

    Article  ADS  Google Scholar 

  225. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, and J. Wambach, “Charge-exchange transitions in hot nuclei,” Phys. Atom. Nuclei 72, 1320–1331 (2009).

    Article  ADS  Google Scholar 

  226. P. Möller, A. Sierk, T. Ichikawa, and H. Sagawa, “Nuclear ground-state masses and deformations: FRDM(2012),” At. Data Nucl. Data Tables 109–110, 1—204 (2016).

    Article  ADS  Google Scholar 

  227. A. A. Dzhioev, K. Langanke, G. Martínez-Pinedo, et al., “Unblocking of stellar electron capture for neutron-rich N = 50 nuclei at finite temperature,” Phys. Rev. C 101, 025805 (2020).

    Article  ADS  Google Scholar 

  228. A. I. Vdovin, A. A. Dzhioev, and Ch. Stoyanov, “Thermal quasi-particle random-phase approximation calculations of electron capture on neutron-rich nuclei in pre-supernova environment with the Skyrme effective interaction,” Nucl. Theory 38, 162–171 (2019).

    Google Scholar 

  229. A. Juodagalvis, K. Langanke, W. R. Hix, et al., “Improved estimate of electron capture rates on nuclei during stellar core collapse,” Nucl. Phys. A 848, 454—478 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the RF Ministry of Science and Higher Education, grant no. 075-10-2020-117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dzhioev.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhioev, A.A., Vdovin, A.I. Superoperator Approach to the Theory of Hot Nuclei and Astrophysical Applications: II—Electron Capture in Stars. Phys. Part. Nuclei 53, 939–999 (2022). https://doi.org/10.1134/S1063779622050045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622050045

Navigation