Skip to main content
Log in

Superoperator Approach to the Theory of Hot Nuclei and Astrophysical Applications: I—Spectral Properties of Hot Nuclei

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The method of superoperators in Liouville space was applied to study spectral properties of hot nuclei. It is shown that properly defined fermionic superoperators allow us to generalize the equation-of-motion method to hot nuclei. Within the superoperator approach, for the nuclear model with separable particle–hole residual interaction of Landau–Migdal type, we derived the equations of thermal quasiparticle random phase approximation, which allow the spectral densities and strength functions of charge-exchange and charge-neutral excitations of hot nuclei to be calculated in a thermodynamically consistent way, i.e., without violating the principle of detailed balance. For the quasiparticle-phonon nuclear model, a thermodynamically consistent way is proposed for going beyond the random phase approximation by considering the interaction of thermal phonons. Using the Donnelly–Walecka method and the superoperator approach, expressions for cross sections of semileptonic weak reactions with hot nuclei are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. The problem of the limits of applicability of the thermodynamic approach to describing the properties of atomic nuclei and the methods for determining the nucleus temperature are considered in many works (see, e.g., [58]).

  2. In the case of a self-adjoint operator \(\mathcal{T} = {{\mathcal{T}}^{\dag }}\), the principle of detailed balance relates the excitation and deexcitation rates of hot systems, \({{S}_{\mathcal{T}}}( - E,T) = {{{\text{e}}}^{{ - E/T}}}{{S}_{\mathcal{T}}}(E,T)\).

  3. If the set \(\left\{ {\left| n \right\rangle } \right\}\) consists of the eigenstates of the Hamiltonian \(H\), then \({\kern 1pt} \left| m \right\rangle \left\langle n \right|\) are the eigenstates of the Liouville superoperator 

    $$\mathcal{L}(\left| m \right\rangle \left\langle n \right|) = {{E}_{{mn}}}\left| m \right\rangle \left\langle n \right|,$$
    (13)

    where \({{E}_{{mn}}} = {{E}_{m}} - {{E}_{n}}\). Moreover \({\kern 1pt} \left| m \right\rangle \left\langle n \right|\) and the Hermitian-adjoint operator \({\kern 1pt} \left| n \right\rangle \left\langle m \right|\) are matched by eigenvalues equal in absolute value but having opposite sign.

  4. The definition of left superoperators \({{\vec {a}}^{\dag }}\), \(\vec {a}\) that we use does not differ from the definition in the paper by Schmutz [36]. However, for right fermionic superoperators, as will be shown below, we use a more convenient definition. Also note that in [36] the left superoperators were denoted with the symbol “hat,” while the right ones, with the symbol “tilde.”

  5. Another way to prove relations (33) is to consider the scalar products of the right and left sides with basis vectors. For example:

    $$\begin{gathered} \left\langle {\left\langle {mn\left\| {{{{\vec {a}}}_{i}}} \right\|I} \right\rangle } \right\rangle = \sum\limits_k \left\langle {\left\langle {\left. {mn{\kern 1pt} } \right\|{{a}_{i}}\left| {{\kern 1pt} k} \right\rangle \left\langle {{\kern 1pt} k} \right|} \right\rangle } \right\rangle \\ = \sum\limits_k \left\langle {m\left| {{{a}_{i}}} \right|k} \right\rangle {{\delta }_{{kn}}} = \left\langle {m\left| {{{a}_{i}}} \right|n} \right\rangle = \left\langle {\left\langle {\left. {mn} \right\|{{a}_{i}}} \right\rangle } \right\rangle , \\ \end{gathered} $$

    from where follows \({{\vec {a}}_{i}}\left| {\left| {I{\kern 1pt} } \right\rangle } \right\rangle = \left| {\left| {{{a}_{i}}{\kern 1pt} } \right\rangle } \right\rangle \). The other relations are proved similarly.

  6. Really, \({{(\vec {A}\vec {B})}^{\dag }} = {{(\overleftarrow {AB} )}^{\dag }} = \overleftarrow {{{{(AB)}}^{\dag }}} = \overleftarrow {{{B}^{\dag }}{{A}^{\dag }}} = {{\vec {B}}^{\dag }}{{\vec {A}}^{\dag }}{\kern 1pt} .\)

  7. For a time-independent Liouvillian, the formal solution of Eq. (10) has the form

    $$\left| {\left| {\rho (t)} \right\rangle } \right\rangle = {\kern 1pt} {{e}^{{ - i\mathcal{L}(t - {{t}_{0}})}}}\left| {\left| {\rho ({{t}_{0}})} \right\rangle } \right\rangle .$$
  8. In [42–46], in order to obtain the superoperator representation of the Lindblad equation for the density matrix of an open quantum system, relations (63) were used in the following way

    $$\left| {\left| {A\rho B} \right\rangle } \right\rangle = {{\sigma }_{B}}\vec {A}{\kern 1pt} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{B} }^{\dag }}\left| {\left| \rho \right\rangle } \right\rangle .$$
    (75)

    Products of the form \(A\rho B\) are contained in the part of Lindblad equation that describes the processes of dissipation in the system [77].

  9. From (50) it follows that

    $$\left\langle {\left\langle {k\left\| {{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }}_{j}}} \right\|{\kern 1pt} mn} \right\rangle } \right\rangle = i{{( - 1)}^{{(m + n)}}}\left\langle {\left\langle {lk\left\| {{{{\vec {a}}}_{j}}} \right\|nm} \right\rangle } \right\rangle {\text{*}}.$$

    However, since only matrix elements with \(k + l = m + n - 1\) differ from zero, then

    $$\begin{gathered} \sigma _{{k + l}}^{*}{{\sigma }_{{m + n}}} = {{( + i)}^{{{{{(k + l)}}^{2}}}}}{{( - i)}^{{{{{(m + n)}}^{2}}}}} \\ = {{( + i)}^{{(k + l + m + n)(k + l - m - n)}}} = {{( + i)}^{{ - 2(m + n) + 1}}} = i{{( - 1)}^{{(m + n)}}}. \\ \end{gathered} $$
  10.  The latter rule, the double tilde rule, is consistent with (78), since

  11.  From the tilde invariance of the density matrix, it follows that \(\tilde {\mathcal{L}} = - \mathcal{L}\) even in the case when \(\mathcal{L} \ne {{\mathcal{L}}^{\dag }}\) [42–46].

  12.  If

    $$\left\langle {\left\langle {I\left\| {{{{\vec {A}}}_{i}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{B} }}_{i}}} \right\|I} \right\rangle } \right\rangle = {{( - 1)}^{{({{\eta }_{{{{B}_{i}}}}} + 1){{\eta }_{{{{B}_{i}}}}}/2}}}{\text{Tr(}}{{A}_{i}}B_{i}^{\dag }) \ne 0,$$
    (94)

    then \({{N}_{{{{A}_{i}}}}} + {{N}_{{{{B}_{i}}}}}\) is even, while \({{m}_{{{{A}_{i}}}}} + {{n}_{{{{B}_{i}}}}} = {{n}_{{{{A}_{i}}}}} + {{m}_{{{{B}_{i}}}}}\).

  13.  If right superoperators of creation and annihilation are defined according to (50), then

    $$\left\langle {\left\langle {I\left\| {{{{\vec {A}}}_{i}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{B} }}_{i}}} \right\|I} \right\rangle } \right\rangle = \sigma _{{{{A}_{i}}}}^{*}\sigma _{{{{B}_{i}}}}^{*}{{( - 1)}^{{{{N}_{{{{A}_{i}}}}}{{N}_{{{{B}_{i}}}}}}}}\left\langle {\left\langle {I\left\| {{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{A} }}_{i}}{{{\vec {B}}}_{i}}} \right\|I} \right\rangle } \right\rangle {\text{*}}.$$

    For a fermion-like \({{A}_{i}}{{B}_{i}}\), the left and right matrix elements are zero. Otherwise. \(\sigma _{{{{A}_{i}}}}^{*}\sigma _{{{{B}_{i}}}}^{*}{{( - 1)}^{{{{N}_{{{{A}_{i}}}}}{{N}_{{{{B}_{i}}}}}}}} = 1\).

  14.  Let us prove the first equality:

    $$\begin{gathered} \vec {A}{\kern 1pt} \left| {\left| {\sqrt {\rho (T)} } \right\rangle } \right\rangle = \vec {A}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\rho } }}^{{1/2}}}\left| {\left| {I{\kern 1pt} } \right\rangle } \right\rangle = {{\sigma }_{A}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\rho } }}^{{1/2}}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{A} }}^{\dag }}\left| {\left| {I{\kern 1pt} } \right\rangle } \right\rangle {\kern 1pt} \\ = {{\sigma }_{A}}{\kern 1pt} {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\rho } }}^{{1/2}}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{A} }}^{\dag }}{\kern 1pt} {{{\vec {\rho }}}^{{ - 1/2}}}\vec {\rho }{{{\kern 1pt} }^{{1/2}}}\left| {\left| {I{\kern 1pt} } \right\rangle } \right\rangle = {{\sigma }_{A}}{\kern 1pt} {{{\text{e}}}^{{\mathcal{L}/2T}}}{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{A} }}^{\dag }}\left| {\left| {\sqrt {\rho (T)} } \right\rangle } \right\rangle . \\ \end{gathered} $$

    We have taken into account that \(\vec {A}\) commutes with \({{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\rho } }^{{1/2}}}\)and that in the equilibrium case the operator inverse to \({{\rho }^{{1/2}}}\) is equal to \({{\rho }^{{ - 1/2}}}\) (see (96)).

  15. Consider the following chain of equalities

    $$\begin{gathered} \left\langle {\left\langle {\sqrt {\rho (T)} \left\| {\vec {A}(t)\vec {B}(t{\kern 1pt} ')} \right\|\sqrt {\rho (T)} } \right\rangle } \right\rangle \\ = {{\sigma }_{{AB}}}\left\langle {\left\langle {\sqrt {\rho (T)} \left\| {{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{B} }}^{\dag }}(t{\kern 1pt} '){\kern 1pt} {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{A} }}^{\dag }}(t)} \right\|\sqrt {\rho (T)} } \right\rangle } \right\rangle = {{\sigma }_{{AB}}}\sigma _{A}^{*}{{\sigma }_{B}} \\ \times \,\,\left\langle {\left\langle {\sqrt {\rho (T)} \left\| {\vec {B}(t{\kern 1pt} '\,\, - {i \mathord{\left/ {\vphantom {i {2T}}} \right. \kern-0em} {2T}})\vec {A}(t + {i \mathord{\left/ {\vphantom {i {2T}}} \right. \kern-0em} {2T}})} \right\|\sqrt {\rho (T)} } \right\rangle } \right\rangle \\ = {{\sigma }_{{AB}}}\sigma _{A}^{*}{{\sigma }_{B}}\left\langle {\left\langle {\sqrt {\rho (T)} \left\| {\vec {B}(t{\kern 1pt} ')\vec {A}(t + {i \mathord{\left/ {\vphantom {i T}} \right. \kern-0em} T})} \right\|\sqrt {\rho (T)} } \right\rangle } \right\rangle . \\ \end{gathered} $$

    If \(AB\) is the fermion-like operator, then matrix elements are zero. Otherwise \({{\sigma }_{{AB}}}\sigma _{A}^{*}{{\sigma }_{B}} = 1\), which proves (103).

  16.  We assume that the proton has an isospin projection \({{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0em} 2}\), while neutron, \({{ + 1} \mathord{\left/ {\vphantom {{ + 1} 2}} \right. \kern-0em} 2}\). Then charge-exchange operators of \(n \to p\) transitions contain the operator lowering the isospin \({{t}_{ - }}\) (\({{t}_{ - }}{\kern 1pt} \left| n \right\rangle = \left| p \right\rangle \)), while operators of \(p \to n\) transitions contain the isospin-raising operator \({{t}_{ + }}\) (\({{t}_{ + }}{\kern 1pt} \left| p \right\rangle = \left| n \right\rangle \)). Note also that if \(A\) corresponds to transition \(n \to p\), then \({{A}^{\dag }}\) is the \(p \to n\) transition operator and vice versa.

  17.  Since the calculations are carried out in the grand canonical ensemble, the thermal Hamiltonian contains the chemical potentials

    $$\mathcal{H} = (H - {{\mu }_{p}}Z - {{\mu }_{n}}N) - (\tilde {H} - {{\mu }_{p}}\tilde {Z} - {{\mu }_{n}}\tilde {N}).$$
    (123)
  18.  The expression for the detailed balance obtained in [88] transforms into (136) if the ratio of the partition functions of the parent and daughter nuclei is set equal to unity, while a difference in the masses of the nuclei is considered equal to the effective threshold.

  19.  Recall that it is precisely this situation is realized in the derivation of the RPA equations, when the Hartree–Fock vacuum is used as the ground state in the equation of motion instead of the phonon vacuum [41].

  20.  Following [85, v. 1, p. 86], we use the following definition of a reduced matrix element \(t_{{{{j}_{1}}{{j}_{2}}}}^{{(J)}} = \left\langle {{{j}_{1}}\left\| {{{T}_{J}}} \right\|{{j}_{2}}} \right\rangle \)

    $$\left\langle {{{j}_{1}}{{m}_{1}}\left| {{{T}_{{JM}}}} \right|{{j}_{2}}{{m}_{2}}} \right\rangle = \hat {j}_{1}^{{ - 1}}\left\langle {\left. {{{j}_{2}}{{m}_{2}}JM} \right|{{j}_{1}}{{m}_{1}}} \right\rangle t_{{{{j}_{1}}{{j}_{2}}}}^{{(J)}}.$$
    (153)

    Then for the \(M\)th component of an arbitrary one-particle tensor operator \({{T}_{J}}\), we can write

    $$\begin{gathered} {{T}_{{JM}}} = \sum\limits_{\begin{array}{*{20}{c}} {{{j}_{1}}{{m}_{1}}} \\ {{{j}_{2}}{{m}_{2}}} \end{array}} \left\langle {{{j}_{1}}{{m}_{1}}\left| {{{T}_{{JM}}}} \right|{{j}_{2}}{{m}_{2}}} \right\rangle a_{{{{j}_{1}}{{m}_{1}}}}^{\dag }{{a}_{{{{j}_{2}}{{m}_{2}}}}} \\ = - {{{\hat {J}}}^{{ - 1}}}\sum\limits_{{{j}_{1}}{{j}_{2}}} t_{{{{j}_{1}}{{j}_{2}}}}^{{(J)}}[a_{{{{j}_{1}}}}^{\dag }{{a}_{{{{{\bar {j}}}_{2}}}}}]{{\,}_{{JM}}}, \\ \end{gathered} $$
    (154)

    where \(\hat {J} = \sqrt {2J + 1} \), and with the use of square brackets \({{[ \ldots ]}_{{JM}}}\), the coupling of two angular momenta into the total angular momentum \(J\) with the projection \(M\) is denoted:

    $${{[a_{{{{j}_{1}}}}^{\dag }a_{{{{j}_{2}}}}^{\dag }]}_{{JM}}} = \sum\limits_{{{m}_{1}}{{m}_{2}}} \left\langle {\left. {{{j}_{1}}{{m}_{1}}{{j}_{2}}{{m}_{2}}} \right|JM} \right\rangle a_{{{{j}_{1}}{{m}_{1}}}}^{\dag }a_{{{{j}_{2}}{{m}_{2}}}}^{\dag }.$$
    (155)

    The notation \({{[a_{{{{j}_{1}}}}^{\dag }{{a}_{{{{{\bar {j}}}_{2}}}}}]}_{{JM}}}\) in (154) and (157) means

    $${{[a_{{{{j}_{1}}}}^{\dag }{{a}_{{{{{\bar {j}}}_{2}}}}}]}_{{JM}}} = \sum\limits_{{{m}_{1}}{{m}_{2}}} \left\langle {\left. {{{j}_{1}}{{m}_{1}}{{j}_{2}}{{m}_{2}}} \right|JM} \right\rangle a_{{{{j}_{1}}{{m}_{1}}}}^{\dag }{{a}_{{\overline {{{j}_{2}}{{m}_{2}}} }}}.$$
    (156)

    We also introduce the notation used in what follows \({{A}_{{\overline {JM} }}} = {{( - 1)}^{{J - M}}}{{A}_{{J - M}}}\).

  21.  The bosonic expansion method was used to diagonalize the thermal Hamiltonian of the Lipkin model in our works [102, 103].

  22.  In the absence of pairing correlations, we consider particles and holes as quasiparticles.

  23.  The second relation uses the fact that it is \(\widetilde \beta _{{\overline {jm} }}^{\dag }\) that is transformed as a spherical tensor operator of rank \(j\) during the rotation of the coordinate system. To verify this, it suffices to express the nucleon creation operator in terms of thermal quasiparticles \(a_{{jm}}^{\dag } = {{x}_{j}}({{u}_{j}}\beta _{{jm}}^{\dag } + {{v}_{j}}{{\beta }_{{\overline {jm} }}}) - i{{y}_{j}}({{v}_{j}}\tilde {\beta }_{{\overline {jm} }}^{\dag } - {{u}_{j}}{{\tilde {\beta }}_{{jm}}})\).

  24.  In what follows, we will call the hole (particle) states that are below (above) the Fermi surface.

  25.  For bosonic operators \({{b}^{\dag }}{\kern 1pt} \left| n \right\rangle = \sqrt {n + 1} \left| {n + 1} \right\rangle \) and \(b{\kern 1pt} \left| n \right\rangle = \sqrt n \left| {n - 1} \right\rangle \).

  26.  Recall that, in contrast to charge-neutral transitions, there is no one-to-one correspondence between the excitation of charge-exchange nontilde (tilde) states and \( \uparrow \)(\( \downarrow \))-transitions.

  27.  As well as for \(T = 0\), the validity of the quasi-boson approximation is related to the requirement that the number of thermal quasiparticles in the vacuum of thermal phonons be small. This requirement is the main assumption in the TQRPA.

  28.  Other amplitudes when permuting the indices \({{j}_{1}}\) and \({{j}_{2}}\) are multiplied by \({{( - 1)}^{{{{j}_{1}} - {{j}_{2}} + J}}}\) (i.e., \(\psi _{{{{j}_{2}}{{j}_{1}}}}^{{Ji}} = {{( - 1)}^{{{{j}_{1}} - {{j}_{2}} + J}}}\psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\) etc.).

  29. Using relations (222) it is easy to show that if \(\mathcal{T}_{{JM}}^{\dag } = {{( - 1)}^{{J - M}}}{{\mathcal{T}}_{{J - M}}}\) (and, therefore, \(t_{{{{j}_{2}}{{j}_{1}}}}^{{(J)}} = {{( - 1)}^{{{{j}_{1}} - {{j}_{2}} + J}}}t_{{{{j}_{1}}{{j}_{2}}}}^{{(J)}}\)), then \(\Gamma _{i}^{{( - )}}({{\mathcal{T}}_{J}}) = 0\). On the contrary, if \(\mathcal{T}_{{JM}}^{\dag } = - {{( - 1)}^{{J - M}}}{{\mathcal{T}}_{{J - M}}}\) (and, therefore, \(t_{{{{j}_{2}}{{j}_{1}}}}^{{(J)}} = {{( - 1)}^{{{{j}_{1}} + {{j}_{2}} + J}}}t_{{{{j}_{1}}{{j}_{2}}}}^{{(J)}}\)), then \(\Gamma _{i}^{{( + )}}({{\mathcal{T}}_{J}}) = 0\).

  30.  The approximately equal sign in (240) means that in the QPM thermal Hamiltonian we neglect the part containing the products of the creation and annihilation operators of thermal quasiparticles of the form \({{\beta }^{\dag }}\beta {{\beta }^{\dag }}\beta \). As with \(T = 0\), terms of this form are fourth-order operators in phonon operators, while \({{\mathcal{H}}_{{{\text{qph}}}}} \sim {{Q}^{\dag }}{{Q}^{\dag }}Q\) is the leading correction to the thermal Hamiltonian of noninteracting phonons.

  31.  In TQRPA (see Eq. (210)), the analogs of these mixed components in the structure of a thermal phonon are two thermal quasiparticle states of the form \({{\beta }^{\dag }}{{\widetilde \beta }^{\dag }}\), which describe the scattering of thermally excited Bogolyubov quasiparticles. By analogy, terms of the form \({{Q}^{\dag }}{{\widetilde Q}^{\dag }}\)correspond to the scattering of thermally excited \(q\)-phonons.

  32.  To obtain expressions for \(\mathcal{M}_{{JM}}^{{(k)\dag }}\) and \(\mathcal{S}_{{LJM}}^{{(k)\dag }}\) from (193), it suffices to make the substitutions: \({{j}_{{1,2}}} \to {{j}_{{p,n}}}\) and \(t_{{{{j}_{1}}{{j}_{2}}}}^{{(J)}} \to f_{{{{j}_{p}}{{j}_{n}}}}^{{(J;k)}},f_{{{{j}_{p}}{{j}_{n}}}}^{{(LJ;k)}}\).

  33.  To consider a distortion of the wave function of a charged lepton in the Coulomb field of the nucleus, see below.

  34.  As shown in [149], the nuclear recoil can be neglected provided that the energy of incident lepton and the energy of nucleus excitation are much less than the nuclear mass \({{M}_{A}}\). If this condition is omitted, then the largest correction will be a coefficient for the density of final states (recoil factor)

    $$\begin{gathered} {{f}_{R}} = {{\left[ {1 + \frac{{{{\varepsilon }_{l}}{{p}_{{l{\kern 1pt} '}}} - {{\varepsilon }_{{l{\kern 1pt} '}}}{{p}_{l}}\cos \theta }}{{{{p}_{{l{\kern 1pt} '}}}{{M}_{A}}{{c}^{2}}}}} \right]}^{{ - 1}}} \\ \approx {{\left[ {1 + \frac{{2{{\varepsilon }_{l}}{{{\sin }}^{2}}({\theta \mathord{\left/ {\vphantom {\theta 2}} \right. \kern-0em} 2})}}{{{{M}_{A}}{{c}^{2}}}}} \right]}^{{ - 1}}}, \\ \end{gathered} $$
    (279)

    by which the right-hand side of (280) is multiplied.

REFERENCES

  1. H. A. Bethe, “Nuclear physics B. Nuclear dynamics, theoretical,” Rev. Mod. Phys. 9, 69–244 (1937).

    Article  ADS  MATH  Google Scholar 

  2. Ya. I. Frenkel, Phys. Zs. Sowjetunion 9, 533 (1936).

    Google Scholar 

  3. L. D. Landau, “On the statistical theory of nuclei,” Zh. Eksp. Teor. Fiz. 7, 819–824 (1937).

    MATH  Google Scholar 

  4. V. Weisskopf, “Statistics and nuclear reactions,” Phys. Rev. 52, 295–303 (1937).

    Article  ADS  MATH  Google Scholar 

  5. V. S. Stavinskii, “Level density of atomic nuclei,” Fiz. Elem. Chastits At. Yadra 3, 832–893 (1972).

    Google Scholar 

  6. E. Suraud, C. Grégoire, and B. Tamain, “Birth, life and death of hot nuclei,” Prog. Part. Nucl. Phys. 23, 357–467 (1989).

    Article  ADS  Google Scholar 

  7. D. J. Morrissey, W. Benenson, and W. A. Friedman, “Measurement of temperature in nuclear reactions,” Annu. Rev. Nucl. Part. Sci. 44, 27–63 (1994).

    Article  ADS  Google Scholar 

  8. A. Kelić, J. B. Natowitz, and K. H. Schmidt, “Nuclear thermometry,” Eur. Phys. J. A 30, 203–213 (2006).

    Article  ADS  Google Scholar 

  9. S. Song, M. Rivet, R. Bimbot, et al., “Evidence for the formation of highly excited compound-like nuclei (T ≈ 5 MeV) in collisions of 720 MeV C projectiles with 238U, 232Th and 197Au targets,” Phys. Lett. B 130, 14–18 (1983).

    Article  ADS  Google Scholar 

  10. S. Shlomo and V. M. Kolomietz, “Hot nuclei,” Rep. Prog. Phys. 68, 1–76 (2005).

    Article  ADS  Google Scholar 

  11. J. O. Newton, B. Herskind, R. M. Diamond, et al., “Observation of giant dipole resonances built on states of high energy and spin,” Phys. Rev. Lett. 46, 1383–1386 (1981).

    Article  ADS  Google Scholar 

  12. P. F. Bortignon, A. Bracco, and R. A. Broglia, “Giant Resonances: Nuclear Structure at Finite Temperature,” in Contemporary Concepts in Physics (Harwood Acad. Publ., 1998), Vol. 10.

  13. M. Di Toro, V. Baran, M. Cabibbo, et al., “The nuclear giant dipole resonance under extreme conditions,” Phys. Elem. Part. At. Nucl. 31, 874–904 (2000).

    Google Scholar 

  14. D. Santonocito and Y. Blumenfeld, “Evolution of the giant dipole resonance properties with excitation energy,” Eur. Phys. J. A 30, 183–202 (2006).

    Article  ADS  Google Scholar 

  15. D. Santonocito and Y. Blumenfeld, “The hot GDR revisited,” Eur. Phys. J. A 56, 279 (2020).

    Article  ADS  Google Scholar 

  16. D. Brink, PhD Thesis (Univ. Oxford, 1955).

  17. P. Axel, “Electric dipole ground-state transition width strength function and 7 MeV photon interactions,” Phys. Rev. 126, 671–683 (1962).

    Article  ADS  Google Scholar 

  18. D. Vautherin and N. Vinh Mau, “Temperature dependence of collective states in the random-phase approximation,” Nucl. Phys. A 422, 140–156 (1984).

    Article  ADS  Google Scholar 

  19. Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, “Low-energy monopole and dipole response in nuclei at finite temperature,” Phys. Lett. B 681, 315–319 (2009).

    Article  ADS  Google Scholar 

  20. P. Ring, L. M. Robledo, J. L. Egido, and M. Faber, “Microscopic theory of the isovector dipole resonance at high angular momenta,” Nucl. Phys. A 419, 261–294 (1984).

    Article  ADS  Google Scholar 

  21. E. Yüksel, G. Colò, E. Khan, et al., “Multipole excitations in hot nuclei within the finite temperature quasi-particle random phase approximation framework,” Phys. Rev. C 96, 024303 (2017).

    Article  ADS  Google Scholar 

  22. H. Sagawa and G. F. Bertsch, “Self-consistent calculations of finite temperature nuclear response function,” Phys. Lett. B 146, 138–142 (1984).

    Article  ADS  Google Scholar 

  23. E. V. Litvinova, S. P. Kamerdzhiev, and V. I. Tselyaev, “Temperature generalization of the quasi-particle random-phase approximation with allowance for a continuum,” Phys. Atom. Nucl. 66, 558—564 (2003).

    Article  ADS  Google Scholar 

  24. E. Khan, N. Van Giai, and M. Grasso, “Collective motions in hot exotic nuclei: The finite temperature continuum QRPA,” Nucl. Phys. A 731, 311–316 (2004).

    Article  ADS  Google Scholar 

  25. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatlit, Moscow, 1962; Prentice Hall Press, 1963).

  26. P. F. Bortignon, R. A. Broglia, G. F. Bertsch, and J. Pacheco, “Damping of nuclear excitations at finite temperature,” Nucl. Phys. A 460, 149–163 (1986).

    Article  ADS  Google Scholar 

  27. G. G. Bunatyan, “On statistical description of the compound states of nuclei,” Sov. J. Nucl. Phys. 26, 979–990 (1977).

    Google Scholar 

  28. S. P. Kamerdzhiev, Preprint FEI-1860 (FEI, Obninsk, 1987).

    Google Scholar 

  29. S. P. Kamerdzhiev, G. Ya. Tertychnyi, and V. I. Tselyaev, “Method of chronological decoupling of diagrams and its application to description of giant resonances in magic nuclei,” Fiz. Elem. Chastits At. Yadra 28, 333–390 (1997).

    Google Scholar 

  30. E. Litvinova and H. Wibowo, “Finite-temperature relativistic nuclear field theory: An application to the dipole response,” Phys. Rev. Lett. 121,082501 (2018).

    Article  ADS  Google Scholar 

  31. E. Litvinova and H. Wibowo, “Nuclear response in a finite-temperature relativistic framework,” Eur. Phys. J. A 55, 223 (2019).

    Article  ADS  Google Scholar 

  32. H. Wibowo and E. Litvinova, “Nuclear dipole response in the finite-temperature relativistic time-blocking approximation,” Phys. Rev. C 100, 024307 (2019).

    Article  ADS  Google Scholar 

  33. Y. Takahashi and H. Umezawa, “Thermo-field dynamics,” Collect. Phenom. 2. 55 (1975).

    MathSciNet  MATH  Google Scholar 

  34. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo-Field Dynamics and Condensed States (Elsevier, Amsterdam, 1982; Mir, Moscow, 1985).

  35. A. A. Dzhioev and A. I. Vdovin, “On the TFD treatment of collective vibrations in hot nuclei,” Int. J. Mod. Phys. E 18, 1535–1560 (2009).

    Article  ADS  Google Scholar 

  36. M. Schmutz, “Real-time Green’s functions in many body problems,” Z. Phys. B 30, 97–106 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Ojima, “Gauge fields at finite temperatures—“Thermo field dynamics” and the KMS condition and their extension to gauge theories,” Ann. Phys. 137, 1–32 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  38. N. P. Landsman and van C. G. Weert, “Real- and imaginary-time field theory at finite temperature and density,” Phys. Rep. 145, 141–249 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  39. D. J. Rowe, “Equations of motion method and the extended shell model,” Rev. Mod. Phys. 40, 153–166 (1968).

    Article  ADS  Google Scholar 

  40. D. J. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, 2010).

    Book  MATH  Google Scholar 

  41. J. Suhonen, From Nucleons to Nucleus (Springer, Berlin, 2007).

    Book  MATH  Google Scholar 

  42. A. A. Dzhioev and D. S. Kosov, “Second-order post-Hartree-Fock perturbation theory for the electron current,” J. Chem. Phys. 134, 154107 (2011).

    Article  ADS  Google Scholar 

  43. A. A. Dzhioev and D. S. Kosov, “Super-fermion representation of quantum kinetic equations for the electron transport problem,” J. Chem. Phys. 134, 044121 (2011).

    Article  ADS  Google Scholar 

  44. A. A. Dzhioev and D. S. Kosov, “Nonequilibrium perturbation theory in Liouville-Fock space for inelastic electron transport,” J. Phys.: Condens. Matter 24, 225304 (2012).

    ADS  Google Scholar 

  45. A. A. Dzhioev and D. S. Kosov, “Nonequilibrium configuration interaction method for transport in correlated quantum systems,” J. Phys. A: Math. Theor. 47, 095002 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. A. Dzhioev and D. S. Kosov, “Superoperator coupled cluster method for nonequilibrium density matrix,” J. Phys. A: Math. Theor. 48, 015004 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. H. A. Bethe, “Supernova mechanisms,” Rev. Mod. Phys. 62. 801–866 (1990).

    Article  ADS  Google Scholar 

  48. K. Langanke and G. Martínez-Pinedo, “Nuclear weak-interaction processes in stars,” Rev. Mod. Phys. 75, 819–862 (2003).

    Article  ADS  Google Scholar 

  49. H.-T. Janka, K. Langanke, A. Marek, et al., “Theory of core-collapse supernovae,” Phys. Rep. 442, 38–74 (2007).

    Article  ADS  Google Scholar 

  50. G. Martínez-Pinedo, M. Liebendörfer, and D. Frekers, “Nuclear input for core-collapse models,” Nucl. Phys. A 777, 395–423 (2006).

    Article  ADS  Google Scholar 

  51. F. Hoyle, “The synthesis of the elements from hydrogen,” Mon. Not. R. Astron. Soc. 106, 343–383 (1946).

    Article  ADS  Google Scholar 

  52. J. J. Cowan, C. Sneden, J. E. Lawler, et al., “Origin of the heaviest elements: The rapid neutron-capture process,” Rev. Mod. Phys. 93, 15002 (2021).

    Article  Google Scholar 

  53. A. Heger, K. Langanke, G. Martínez-Pinedo, and S. E. Woosley, “Presupernova collapse models with improved weak-interaction rates,” Phys. Rev. Lett. 86, 1678–1681 (2001).

    Article  ADS  Google Scholar 

  54. A. Heger, S. E. Woosley, G. Martínez-Pinedo, and K. Langanke, “Presupernova evolution with improved rates for weak interactions,” Astrophys. J. 560, 307 (2001).

    Article  ADS  Google Scholar 

  55. K. Langanke, G. Martínez-Pinedo, J. M. Sampaio, et al., “Electron capture rates on nuclei and implications for stellar core collapse,” Phys. Rev. Lett. 90, 241102 (2003).

    Article  ADS  Google Scholar 

  56. W. R. Hix, O. E. B. Messer, A. Mezzacappa, et al., “Consequences of nuclear electron capture in core collapse supernovae,” Phys. Rev. Lett. 91, 201102 (2003).

    Article  ADS  Google Scholar 

  57. K. G. Balasi, K. Langanke, and G. Martínez-Pinedo, “Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis,” Prog. Part. Nucl. Phys. 85, 33–81 (2015).

    Article  ADS  Google Scholar 

  58. C. Sullivan, E. O’Connor, R. G. T. Zegers, et al., “The sensitivity of core-collapse supernovae to nuclear electron capture,” Astrophys. J. 816, 44 (2016).

    Article  ADS  Google Scholar 

  59. R. Titus, C. Sullivan, R. G. T. Zegers, et al., “Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae,” J. Phys. G: Nucl. Part. Phys. 45, 014004 (2018).

    Article  ADS  Google Scholar 

  60. A. Pascal, S. Giraud, A. F. Fantina, et al., “Impact of electron capture rates for nuclei far from stability on core-collapse supernovae,” Phys. Rev. C 101, 015803 (2020).

    Article  ADS  Google Scholar 

  61. K. Langanke, G. Martínez-Pinedo, and R. Zegers, “Electron capture in stars,” Rep. Prog. Phys. 84, 066301 (2021).

    Article  ADS  Google Scholar 

  62. K. Langanke and G. Martínez-Pinedo, “Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range A = 45–65 in supernovae environments,” Nucl. Phys. A 673, 481–508 (2000).

    Article  ADS  Google Scholar 

  63. K. Langanke and G. Martínez-Pinedo, “Rate tables for the weak processes of pf-shell nuclei in stellar environments,” At. Data Nucl. Data Tables 79, 1–46 (2001).

    Article  ADS  Google Scholar 

  64. J. M. Sampaio, K. Langanke, and G. Martínez-Pinedo, “Neutrino absorption cross sections in the supernova environment,” Phys. Lett. B 511, 11–18 (2001).

    Article  ADS  Google Scholar 

  65. J. M. Sampaio, K. Langanke, G. Martínez-Pinedo, and D. J. Dean, “Neutral-current neutrino reactions in the supernova environment,” Phys. Lett. B 529, 19–25 (2002).

    Article  ADS  Google Scholar 

  66. C. T. Angell, S. L. Hammond, H. J. Karwowski, et al., “Evidence for radiative coupling of the pygmy dipole resonance to excited states,” Phys. Rev. C 86, 51302 (2012).

    Article  ADS  Google Scholar 

  67. J. Cooperstein and J. Wambach, “Electron capture in stellar collapse,” Nucl. Phys. A 420, 591–620 (1984).

    Article  ADS  Google Scholar 

  68. N. Paar, G. Colò, E. Khan, and D. Vretenar, “Calculation of stellar electron-capture cross sections on nuclei based on microscopic Skyrme functionals,” Phys. Rev. C 80, 055801 (2009).

    Article  ADS  Google Scholar 

  69. Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, “Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation,” Phys. Rev. C 83, 45807 (2011).

    Article  ADS  Google Scholar 

  70. A. F. Fantina, E. Khan, G. Colò, et al., “Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional,” Phys. Rev. C 86, 035805 (2012).

    Article  ADS  Google Scholar 

  71. A. Ravlić, E. Yüksel, Y. F. Niu, et al., “Stellar electron-capture rates based on finite-temperature relativistic quasi-particle random-phase approximation,” Phys. Rev. C 102, 65804 (2020).

    Article  ADS  Google Scholar 

  72. S. E. Koonin, D. J. Dean, and K. Langanke, “Shell model Monte Carlo methods,” Phys. Rep. 278, 1–77 (1997).

    Article  ADS  Google Scholar 

  73. J. L. Egido and P. Ring, “The decay of hot nuclei,” J. Phys. G: Nucl. Part. Phys. 19, 1–54 (1993).

    Article  ADS  Google Scholar 

  74. K. Blum, Density Matrix Theory and its Applications (Springer, Berlin, 2012; Mir, Moscow, 1983).

  75. V. E. Tarasov, Basics of Quantum Mechanics (Vuzovskaya Kniga, Moscow, 2000) [in Russian].

    Google Scholar 

  76. F. A. Buot, “General theory of quantum distribution function transport equations: Superfluid systems and ultrafast dynamics of optically excited semiconductors,” Rivista del Nuovo Cimento 20, 1–75 (1997).

    Article  Google Scholar 

  77. H. P. Breuer and F. Petruccione, Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2002; NITs Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2010)

  78. A. Ben-Reuven, “Symmetry considerations in pressure-broadening theory,” Phys. Rev. 141, 34–40 (1966).

    Article  ADS  Google Scholar 

  79. R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  80. P. C. Martin and J. Schwinger, “Theory of many-particle systems. I,” Phys. Rev. 115, 1342–1373 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, New York, 1974; Mir, Moscow, 1976).

  82. T. Hatsuda, “Mean field theory and boson expansion at finite temperature on the basis of the thermo field dynamics,” Nucl. Phys. A 492, 187–204 (1989).

    Article  ADS  Google Scholar 

  83. O. Civitarese and A. L. DePaoli, “Thermo field dynamics in the treatment of the nuclear pairing problem at finite temperature,” Z. Phys. A 344, 243–249 (1992).

    Article  ADS  Google Scholar 

  84. A. I. Vdovin and D. S. Kosov, “Single-phonon states in hot nuclei,” Phys. At. Nucl. 58, 829–836 (1995).

    Google Scholar 

  85. A. Bohr and B. Mottelson, Nuclear Structure (World Scientific, Singapore, 2008; Mir, Moscow, 1971).

  86. A. V. Ignatyuk, Statistic Properties of Excited Atomic Nuclei (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  87. S. Levit, “Hot nuclei–theory and phenomena. The response of nuclei under extreme conditions,” Ed. by R. A. Broglia and G. F. Bertsch (Springer US Boston, MA, 1988), pp. 87–114.

    Google Scholar 

  88. G. W. Misch, “Nuclear weak rates and detailed balance in stellar conditions,” Astrophys. J. 844, 20 (2017).

    Article  ADS  Google Scholar 

  89. I. A. Kvasnikov, Thermodynamics and Statistical Physics (URSS, Moscow, 2010), Vol. 4. Quantum Statistics.[in Russian]

  90. M. Brack and P. Quentin, “Selfconsistent calculations of highly excited nuclei,” Phys. Lett. B 52, 159–162 (1974).

    Article  ADS  Google Scholar 

  91. P. Bonche, S. Levit, and D. Vautherin, “Properties of highly excited nuclei,” Nucl. Phys. A 427, 278–296 (1984).

    Article  ADS  Google Scholar 

  92. V. G. Soloviev, Nuclear Theory: Quasi-particles and Phonons (Energoatomizdat, Moscow, 1989; CRC Press, 2019).

  93. A. B. Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nuclei (Nauka, Moscow, 1983; Interscience Publishers, 1967).

  94. N. V. Giai and H. Sagawa, “Spin-isospin and pairing properties of modified Skyrme interactions,” Phys. Lett. B 106, 379–382 (1981).

    Article  ADS  Google Scholar 

  95. N. V. Giai, Ch. Stoyanov, and V. V. Voronov, “Finite rank approximation for random phase approximation calculations with Skyrme interactions: An application to Ar isotopes,” Phys. Rev. C 57, 1204–1209 (1998).

    Article  ADS  Google Scholar 

  96. A. P. Severyukhin, Ch. Stoyanov, V. V. Voronov, and N. V. Giai, “Quasi-particle random phase approximation with finite rank approximation for Skyrme interactions,” Phys. Rev. C 66, 34304 (2002).

    Article  ADS  Google Scholar 

  97. M. G. Urin, “Analog resonances and states,” Fiz. Elem. Chastits At. Yadra 4, 991–1047 (1980).

    Google Scholar 

  98. Yu. V. Gaponov and Yu. S. Lyutostanskii, “Microscopic description of the Gamow-Teller resonance and collective isobaric 1+ states of spherical nuclei,” Fiz. Elem. Chastits At. Yadra 12, 1324–1363 (1981).

    Google Scholar 

  99. N. I. Pyatov and S. A. Fayans, “Charge-exchange nuclear excitations,” Fiz. Elem. Chastits At. Yadra 14, 953–1019 (1983).

    Google Scholar 

  100. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Wiley, 1972).

    MATH  Google Scholar 

  101. I. A. Vdovin and V. G. Soloviev, “Quasi-particle-phonon nuclear model. III. Single-phonon states in spherical nuclei,” Fiz. Elem. Chastits At. Yadra 14, 237–285 (1983).

    Google Scholar 

  102. A. Dzhioev, Z. Aouissat, A. Storozhenko, et al., “Extended Holstein-Primakoff mapping for the next-to-leading order of the 1/N expansion at finite temperature,” Phys. Rev. C 69, 014318 (2004).

    Article  ADS  Google Scholar 

  103. A. I. Vdovin, A. A. Dzhioev, and A. N. Storozhenko, “Boson-fermion Holstein–Primakoff mapping at nonzero temperatures for the example of the Lipkin model,” Phys. At. Nucl. 66, 1861 (2003).

    Article  Google Scholar 

  104. D. S. Kosov and A. I. Vdovin, “The TFD treatment of the quasi-particle-phonon interaction at finite temperature,” Mod. Phys. Lett. A 09, 1735–1743 (1994).

    Article  ADS  Google Scholar 

  105. A. L. Goodman, “Finite-temperature HFB theory,” Nucl. Phys. A 352, 30–44 (1981).

    Article  ADS  Google Scholar 

  106. O. Civitarese, G. G. Dussel, and R. P. J. Perazzo, “Thermal aspects of the pairing correlations in finite nuclei,” Nucl. Phys. A 404, 15–28 (1983).

    Article  ADS  Google Scholar 

  107. A. I. Vdovin and A. A. Dzhioev, “Thermal Bogoliubov transformation in nuclear structure theory,” Phys. Part. Nucl. 41, 1127–1131 (2010).

    Article  Google Scholar 

  108. C. Esebbag and J. Egido, “Number projected statistics and the pairing correlations at high excitation energies,” Nucl. Phys. A 552, 205–231 (1993).

    Article  ADS  Google Scholar 

  109. D. Gambacurta, D. Lacroix, and N. Sandulescu, “Pairing and specific heat in hot nuclei,” Phys. Rev. C 88, 034324 (2013).

    Article  ADS  Google Scholar 

  110. D. S. Kosov and A. I. Vdovin, “Approximate number projection at finite temperature,” Z. Phys. A 355, 17–21 (1996).

    Article  ADS  Google Scholar 

  111. K. Ikeda, S. Fujii, and J. Fujita, “The (p,n) reactions and beta decays,” Phys. Lett. 3, 271–272 (1963).

    Article  ADS  Google Scholar 

  112. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, 2004).

    Google Scholar 

  113. F. Alasia and O. Civitarese, “Finite temperature random phase approximation with the inclusion of scattering terms,” Phys. Rev. C 42, 1335–1340 (1990).

    Article  ADS  Google Scholar 

  114. G. G. Dussel, R. J. Liotta, H. Sofia, and T. Vertse, “Temperature dependent resonant random phase approximation,” Phys. Rev. C 46, 558–564 (1992).

    Article  ADS  Google Scholar 

  115. A. A. Dzhioev, A. I. Vdovin, G. Martínez-Pinedo, et al., “Thermal quasi-particle random-phase approximation with Skyrme interactions and supernova neutral-current neutrino-nucleus reactions,” Phys. Rev. C 94, 015805 (2016).

    Article  ADS  Google Scholar 

  116. A. I. Vdovin and D. S. Kosov, “Thermofield transformation in the quasi-particle-phonon nuclear model,” Izv. RAN, Ser. Fiz. 58, 41–47 (1994).

    Google Scholar 

  117. A. N. Storozhenko, A. I. Vdovin, A. Ventura, and A. I. Blokhin, “Temperature dependence of spreading width of giant dipole resonance,” Phys. Rev. C 69, 64320 (2004).

    Article  ADS  Google Scholar 

  118. V. V. Voronov and V. G. Soloviev, “Quasi-particle-phonon nuclear model. IV. Fragmentation of one- and two-quasi-particle states in spherical nuclei,” Fiz. Elem. Chastits At. Yadra 14, 1380–1442 (1983).

    Google Scholar 

  119. A. I. Vdovin, V. V. Voronov, V. G. Soloviev, and Ch. Stoyanov, “Quasi-particle-phonon nuclear model. V. Odd spherical nuclei,” Fiz. Elem. Chastits At. Yadra 16, 245–279 (1985).

    Google Scholar 

  120. V. G. Soloviev, Ch. Stoyanov, and A. I. Vdovin, “Fragmentation of giant multipole resonances over two-phonon states in spherical nuclei,” Nucl. Phys. A 288, 376–396 (1977).

    Article  ADS  Google Scholar 

  121. S. Galès, Ch. Stoyanov, and A. I. Vdovin, “Damping of high-lying single-particle modes in heavy nuclei,” Phys. Rep. 166, 125–193 (1988).

    Article  ADS  Google Scholar 

  122. A. I. Vdovin and A. N. Storozhenko, “Temperature dependence of a spreading width of giant dipole resonance in neutron-rich nuclei,” Nucl. Phys. A 722, C497–C501 (2003).

    Article  ADS  Google Scholar 

  123. A. A. Dzhioev and A. I. Vdovin, “Thermodynamically consistent description of the fragmentation of single-phonon states in hot nuclei,” Phys. Part. Nucl. Lett. 18, 629–639 (2021).

    Article  Google Scholar 

  124. A. V. Ignatyuk, “Contribution of collective motions to the density of excited nuclear states,” Sov. J. Nucl. Phys. 21, 20–30 (1975).

    Google Scholar 

  125. H. M. Sommermann, “Microscopic description of giant resonances in highly excited nuclei,” Ann. Phys. 151, 163–203 (1983).

    Article  ADS  Google Scholar 

  126. S. N. Fedotkin, I. N. Mikhailov, and R. G. Nazmitdinov, “The microscopic description of the isovector dipole excitations at high spins,” Phys. Lett. B 121, 15–20 (1983).

    Article  ADS  Google Scholar 

  127. O. Civitarese, R. A. Broglia, and C. H. Dasso, “On the temperature dependence of the nuclear response,” Ann. Phys. 156, 142–154 (1984).

    Article  ADS  Google Scholar 

  128. J. A. Halbleib and R. A. Sorensen, “Gamow–Teller beta decay in heavy spherical nuclei and the unlike particle–hole RPA,” Nucl. Phys. A 98, 542–568 (1967).

    Article  ADS  Google Scholar 

  129. Yu. V. Gaponov and Yu. S. Lyutostanskii, “Gamow-Teller isobaric 1+ resonance,” Sov. J. Nucl. Phys. 19, 62–74 (1974).

    Google Scholar 

  130. V. A. Kuzmin and V. G. Soloviev, “Description of giant resonances in spherical nuclei,” Sov. J. Nucl. Phys. 35, 620–627 (1982).

    Google Scholar 

  131. A. A. Dzhioev, A. I. Vdovin, and Ch. Stoyanov, “The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment,” Phys. At. Nucl. 79, 1019–1029 (2016).

    Article  Google Scholar 

  132. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, and J. Wambach, “Gamow–Teller resonance in hot nuclei and astrophysical applications,” Bull. Russ. Acad. Sci.: Phys. 72, 269–273 (2008).

    Article  Google Scholar 

  133. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, and J. Wambach, “Charge-exchange transitions in hot nuclei,” Phys. Atom. Nucl. 72, 1320–1331 (2009).

    Article  ADS  Google Scholar 

  134. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, et al., “Gamow–Teller strength distributions at finite temperatures and electron capture in stellar environments,” Phys. Rev. C 81, 015804 (2010).

    Article  ADS  Google Scholar 

  135. O. Civitarese and A. Ray, “Centroids of Gamow–Teller transitions at finite temperature in fp-shell neutron-rich nuclei,” Phys. Scr. 59, 352–354 (1999).

    Article  ADS  Google Scholar 

  136. O. Civitarese, J. G. Hirsch, F. Montani, and M. Reboiro, “Extended quasi-particle random phase approximation at finite temperatures: Calculation of single β-decay Fermi transitions,” Phys. Rev. C 62, 54318 (2000).

    Article  ADS  Google Scholar 

  137. O. Civitarese, and M. Reboiro, “Gamow–Teller transitions at finite temperatures in the extended quasi-particle random phase approximation,” Phys. Rev. C 63, 34323 (2001).

    Article  ADS  Google Scholar 

  138. J. S. O’Connell, T. W. Donnelly, and J. D. Walecka, “Semileptonic weak interactions with 12C,” Phys. Rev. C 6, 719–733 (1972).

    Article  ADS  Google Scholar 

  139. J. D. Walecka, “Semileptonic Weak Interactions in Nuclei,” in Muon Physics V2: Weak Interactions, Ed. by V. W. Hughes and C. S. Wu (Elsevier Science, 1975), p. 113.

    Google Scholar 

  140. E. Kolbe, K. Langanke, and G. Martínez-Pinedo, “Neutrino-nucleus reactions and nuclear structure,” J. Phys. G 29, 2569–2596 (2003).

    Article  ADS  Google Scholar 

  141. N. Paar, D. Vretenar, T. Marketin, and P. Ring, “Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasi-particle random-phase approximation,” Phys. Rev. C 77, 024608 (2008).

    Article  ADS  Google Scholar 

  142. H. Đapo and N. Paar, “Neutral-current neutrino-nucleus cross sections based on relativistic nuclear energy density functional,” Phys. Rev. C 86, 35804 (2012).

    Article  Google Scholar 

  143. V. C. Chasioti, T. S. Kosmas, and P. C. Divari, “Inelastic neutrino-nucleus reaction cross sections at low neutrino-energies,” Prog. Part. Nucl. Phys. 59, 481–485 (2007).

    Article  ADS  MATH  Google Scholar 

  144. R. Lazauskas and C. Volpe, “Neutrino beams as a probe of the nuclear isospin and spin-isospin excitations,” Nucl. Phys. A 792, 219–228 (2007).

    Article  ADS  Google Scholar 

  145. P. Vogel, “Neutrino-nucleus cross section at low energies,” Nucl. Phys. A 777, 340–355 (2006).

    Article  ADS  Google Scholar 

  146. N. T. Zinner, K. Langanke, and P. Vogel, “Muon capture on nuclei: Random phase approximation evaluation versus data for 6 ≤ Z ≤ 79 nuclei,” Phys. Rev. C 74, 24326 (2006).

    Article  ADS  Google Scholar 

  147. J. D. Walecka, Theoretical Nuclear and Subnuclear Physics (Imperial College Press, 2004).

    Book  Google Scholar 

  148. T. W. Donnelly and R. D. Peccei, “Neutral current effects in nuclei,” Phys. Rep. 50, 1–85 (1979).

    Article  ADS  Google Scholar 

  149. A. I. Akhiezer, A. G. Sitenko, and V. K. Tartakovskii, Nuclear Electrodynamics (Naukova Dumka, Kiev, 1989; Springer, 1994).

  150. J. Beringer, J.-F. Arguin, R. M. Barnett, et al., “Review of particle physics,” Phys. Rev. D 86, 10001 (2012).

    Article  ADS  Google Scholar 

  151. V. V. Balashov, G. Ya. Korenman, and R. A. Eramzhyan, Absorption of Mesons by Atomic Nuclei (Atomizdat, Moscow, 1978).

    Google Scholar 

  152. V. C. Chasioti and T. S. Kosmas, “A unified formalism for the basic nuclear matrix elements in semi-leptonic processes,” Nucl. Phys. A 829, 234–252 (2009).

    Article  ADS  Google Scholar 

  153. T. W. Donnelly and W. C. Haxton, “Multipole operators in semileptonic weak and electromagnetic interactions with nuclei,” At. Data Nucl. Data Tables 23, 103–176 (1979).

    Article  ADS  Google Scholar 

  154. T. W. Donnelly and W. C. Haxton, “Multipole operators in semileptonic weak and electromagnetic interactions with nuclei: II. General single-particle matrix elements,” At. Data Nucl. Data Tables 25, 1–28 (1980).

    Article  ADS  Google Scholar 

  155. W. Haxton and C. Lunardini, “SevenOperators, a Mathematica script for harmonic oscillator nuclear matrix elements arising in semileptonic electroweak interactions,” Comput. Phys. Commun. 179, 345–358 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. S. S. Gershtein and Ya. B. Zeldovich, “On mesonic corrections to the theory of β-decay,” Sov. Phys. JETP 29, 698–699 (1955).

    Google Scholar 

  157. R. P. Feynman and M. Gell-Mann, “Theory of the Fermi interaction,” Phys. Rev. 109, 193–198 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. M. Gell-Mann and M. Lévy, “The axial vector current in beta decay,” Nuovo Cimento, 16, 705–726 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  159. Y. Nambu, “Axial vector current conservation in weak interactions,” Phys. Rev. Lett. 4, 380–382 (1960).

    Article  ADS  Google Scholar 

  160. E. Commins and F. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge Univ. Press, Cambridge, 1983; Atomizdat, Moscow, 1987).

  161. S. K. Singh, “Electroweak form factors,” Nucl. Phys. B Proc. Suppl. 112, 77–85 (2002).

    Article  ADS  Google Scholar 

  162. W.-M. Yao, “Review of particle physics,” J. Phys. G: Nucl. Part. Phys. 33, 1–1232 (2006).

    Article  ADS  Google Scholar 

  163. H. Behrens and W. Bühring, Electron Radial Wave Functions and Nuclear Beta-Decay (Clarendon, Oxford, 1982).

    Google Scholar 

  164. J. Engel, “Approximate treatment of lepton distortion in charged-current neutrino scattering from nuclei,” Phys. Rev. 57, 2004–2009 (1998).

    ADS  Google Scholar 

  165. A. Aste and D. Trautmann, “Focusing of high-energy particles in the electrostatic field of a homogeneously charged sphere and the effective momentum approximation,” Eur. Phys. J. A 33, 11–20 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-10-2020-117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dzhioev.

Additional information

Translated by M. Samokhina

Appendices

APPENDICES

1.1 APPENDIX A: Finding functions \(\alpha (m,n)\) and \(\beta (m,n)\)

For the right superoperators defined according to (47), the conditions \({{[{\kern 1pt} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }_{i}},{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }_{j}}]}_{\sigma }} = 0\), \({{[{\kern 1pt} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{i}^{\dag },\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag }]}_{\sigma }} = 0\) are satisfied regardless of the choice of the functions \(\alpha (m,n)\) and \(\beta (m,n)\). From the condition \({{[{\kern 1pt} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }_{i}},\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag }]}_{\sigma }} = 0\) for \(i \ne j\) and relations

$$\begin{gathered} {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }}_{i}}{\kern 1pt} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag }\left| {\left| {mn} \right\rangle } \right\rangle = \alpha (m,n + 1)\beta (m,n)\left| {\left| {\left| m \right\rangle \left\langle n \right|{{a}_{j}}a_{i}^{\dag }} \right\rangle } \right\rangle , \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag }{\kern 1pt} {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }}_{i}}\left| {\left| {mn} \right\rangle } \right\rangle = \beta (m,n - 1)\alpha (m,n)\left| {\left| {\left| m \right\rangle \left\langle n \right|a_{i}^{\dag }{{a}_{j}}} \right\rangle } \right\rangle \\ \end{gathered} $$
(310)

we obtain

$$\alpha (m,n)\beta (m,n - 1) = \alpha (m,n + 1)\beta (m,n).$$
(311)

With allowance for this relation, from \({{[{\kern 1pt} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }_{j}},\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag }]}_{\sigma }} = 1\) it follows that

$$\alpha (m,n){\kern 1pt} \beta (m,n - 1) = 1.$$
(312)

Consequently, \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{i}^{\dag }{\kern 1pt} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }_{i}}\) satisfies condition (45), i.e., is the superoperator of the number of particles.

Since

$$\begin{gathered} {{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }}_{j}}\vec {a}{\kern 1pt} _{{i}}^{\dag }\left| {\left| {mn} \right\rangle } \right\rangle = \alpha (m + 1,n)\left| {\left| {a_{i}^{\dag }{\kern 1pt} \left| m \right\rangle \left\langle n \right|{\kern 1pt} a_{j}^{\dag }} \right\rangle } \right\rangle , \\ \vec {a}{\kern 1pt} _{{i}}^{\dag }{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }}_{j}}\left| {\left| {mn} \right\rangle } \right\rangle = \alpha (m,n)\left| {\left| {a_{i}^{\dag }{\kern 1pt} \left| m \right\rangle \left\langle n \right|{\kern 1pt} a_{j}^{\dag }} \right\rangle } \right\rangle . \\ \end{gathered} $$
(313)

Then the requirement \({{[{\kern 1pt} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }_{j}},\vec {a}{\kern 1pt} _{{i}}^{\dag }]}_{\sigma }} = 0\) leads to

$$\alpha (m + 1,n) = - \sigma \alpha (m,n),$$
(314)

whence it follows that

$$\alpha (m,n) = {{( - \sigma )}^{m}}\alpha (0,n).$$
(315)

The same relation follows from \({{[{\kern 1pt} {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }_{j}},{{\vec {a}}_{i}}]}_{\sigma }} = 0\). Proceeding similarly, from the conditions \({{[{\kern 1pt} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag },\vec {a}{\kern 1pt} _{{i}}^{\dag }]}_{\sigma }} = 0\) and \({{[{\kern 1pt} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag },{{\vec {a}}_{i}}]}_{\sigma }} = 0\), we get

$$\beta (m + 1,n) = - \sigma \beta (m,n)$$
(316)

or

$$\beta (m,n) = {{( - \sigma )}^{m}}\beta (0,n).$$
(317)

Consider now the following chains of equalites:

$$\begin{gathered} \left\langle {\left\langle {{{m}_{1}}{{n}_{1}}\left\| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{i}^{\dag }} \right\|{{m}_{2}}{{n}_{2}}} \right\rangle } \right\rangle = \beta ({{m}_{2}},{{n}_{2}}){{\delta }_{{{{m}_{1}}{{m}_{2}}}}}\langle {{n}_{2}}\left| {{{a}_{i}}} \right|{{n}_{1}}\rangle \\ = \beta ({{m}_{2}},{{n}_{2}}){{\delta }_{{{{m}_{1}}{{m}_{2}}}}}{{\delta }_{{{{n}_{1}},{{n}_{2}} - 1}}}\langle {{n}_{2}}\left| {{{a}_{i}}} \right|{{n}_{1}}\rangle \\ \end{gathered} $$
(318)

and

$$\begin{gathered} \left\langle {\left\langle {{{m}_{2}}{{n}_{2}}\left\| {{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }}_{i}}} \right\|{{m}_{1}}{{n}_{1}}} \right\rangle } \right\rangle = \alpha ({{m}_{1}},{{n}_{1}}){{\delta }_{{{{m}_{1}}{{m}_{2}}}}}\left\langle {{{n}_{1}}\left| {a_{i}^{\dag }} \right|{{n}_{2}}} \right\rangle \\ = \alpha ({{m}_{1}},{{n}_{1}}){{\delta }_{{{{m}_{1}}{{m}_{2}}}}}{{\delta }_{{{{n}_{1}},{{n}_{2}} - 1}}}\left\langle {{{n}_{1}}\left| {a_{i}^{\dag }} \right|{{n}_{2}}} \right\rangle \\ = \alpha ({{m}_{2}},{{n}_{2}} - 1){{\delta }_{{{{m}_{1}}{{m}_{2}}}}}{{\delta }_{{{{n}_{1}},{{n}_{2}} - 1}}}\left\langle {{{n}_{1}}\left| {a_{i}^{\dag }} \right|{{n}_{2}}} \right\rangle . \\ \end{gathered} $$
(319)

Then from the condition \(\left\langle {\left\langle {{{m}_{1}}{{n}_{1}}\left\| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{i}^{\dag }} \right\|{{m}_{2}}{{n}_{2}}} \right\rangle } \right\rangle = \left\langle {\left\langle {{{m}_{2}}{{n}_{2}}\left\| {{{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} }}_{i}}} \right\|{{m}_{1}}{{n}_{1}}} \right\rangle } \right\rangle {\text{*}}\), it follows that

$$\beta (m,n) = \alpha {\text{*}}(m,n - 1).$$
(320)

Consider what the last of the conditions listed on page 892 leads to. Since

$$\left\langle {\left\langle {mn\left\| {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag }} \right\|I} \right\rangle } \right\rangle = \beta (m,m)\langle m\left| {{{a}_{j}}} \right|n\rangle $$
(321)

and \(\left\langle {\left\langle {\left. {mn} \right|{{a}_{j}}} \right\rangle } \right\rangle = \langle m\left| {{{a}_{j}}} \right|n\rangle \), then the condition \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{a} _{j}^{\dag }\left| {\left| {{\kern 1pt} I} \right\rangle } \right\rangle = c\left| {\left| {{{a}_{j}}} \right\rangle } \right\rangle \) means that

$$\beta (m,m) = c.$$
(322)

Comparing (322) and (317), we obtain

$$\beta (m,n) = c{{( - \sigma )}^{{m + n}}}.$$
(323)

Using this equality on the right-hand side of (320), we get

$$\alpha (m,n) = c{\text{*}}{{( - \sigma )}^{{m + n + 1}}},$$
(324)

which is consistant with (320). Substituting the expressions obtained for \(\alpha (m,n)\) and \(\beta (m,n)\) into (312), we arrive at the condition \(cc^{*} = 1\).

APPENDIX B:

1.1 Secular Equation for Charge-Neutral Thermal Phonons

In addition to condition (213), the amplitudes of charge-neutral thermal phonons satisfy the following relations:

• from \([{{Q}_{{JMi}}},{{Q}_{{JMi{\kern 1pt} '}}}] = 0\), it follows that

$$\begin{gathered} \sum\limits_{{{j}_{1}}{{j}_{2}}} \{ (\psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\psi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \tilde {\phi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\psi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\eta _{{{{j}_{1}}{{j}_{2}}}}^{{\lambda i}}\xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\eta _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\eta }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\xi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \tilde {\xi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\eta }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}})\} = 0; \\ \end{gathered} $$
(325)

• from \([{{Q}_{{JMi}}},\widetilde Q_{{JMi{\kern 1pt} '}}^{\dag }] = 0\), it follows that

$$\begin{gathered} \sum\limits_{{{j}_{1}}{{j}_{2}}} \{ (\psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\psi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji'}} - \phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\psi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \tilde {\phi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\eta _{{{{j}_{1}}{{j}_{2}}}}^{{\lambda i}}\tilde {\eta }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\xi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\eta }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\eta _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \tilde {\xi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}})\} = 0; \\ \end{gathered} $$
(326)

• from \([{{Q}_{{JMi}}},{{\widetilde Q}_{{JMi{\kern 1pt} '}}}] = 0\), it follows that

$$\begin{gathered} \sum\limits_{{{j}_{1}}{{j}_{2}}} \{ (\psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\psi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \tilde {\phi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\eta _{{{{j}_{s}}{{j}_{2}}}}^{{\lambda i}}\tilde {\xi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\tilde {\eta }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\eta }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \tilde {\xi }_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\eta _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}})\} = 0. \\ \end{gathered} $$
(327)

With the help of effective amplitudes (220) four orthonormalization conditions (Eqs. (213), (325)(337)) can be written as two relations: (223) and

$$\begin{gathered} \sum\limits_\tau \sum\limits_{{{j}_{1}}{{j}_{2}}}^\tau {\{ (\Psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\Phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \Phi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\Psi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}})} \\ \times \,\,(1 - y_{{{{j}_{1}}}}^{2} - y_{{{{j}_{2}}}}^{2}) + \\ + \,\,(H_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}\Xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}} - \Xi _{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}H_{{{{j}_{1}}{{j}_{2}}}}^{{Ji{\kern 1pt} '}})(y_{{{{j}_{2}}}}^{2} - y_{{{{j}_{1}}}}^{2})\} = 0. \\ \end{gathered} $$
(328)

The separable form of the residual interaction allows the TQRPA equations (224) and (225) to be reduced to a system of \(4N\) linear homogeneous equations. Indeed, for charge-neutral phonons of normal parity, the formal solution to the problem (224) can be represented in the following form

$$\begin{gathered} G_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}(\tau ) = \frac{{{{{\hat {J}}}^{{ - 2}}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}} - \omega _{{Ji}}^{2}}} \\ \times \,\,\left\{ {\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}u_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(J;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(m;k)}}D_{{Ji}}^{{(k)}}(\rho \tau )} \right)} \right. \\ + \left. {\,\,{{\omega }_{{Ji}}}u_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(JJ;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(s;k)}}D_{{JJi}}^{{(k)}}(\rho \tau )} \right)} \right\}, \\ \end{gathered} $$
$$\begin{gathered} W_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}(\tau ) = \frac{{{{{\hat {J}}}^{{ - 2}}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}} - \omega _{{Ji}}^{2}}} \\ \times \,\,\left\{ {{{\omega }_{{Ji}}}u_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(J;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(m;k)}}D_{{Ji}}^{{(k)}}(\rho \tau )} \right)} \right. \\ \left. { + \,\,\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}u_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(JJ;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(s;k)}}D_{{JJi}}^{{(k)}}(\rho \tau )} \right)} \right\}, \\ T_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}(\tau ) = \frac{{{{{\hat {J}}}^{{ - 2}}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}} - \omega _{{Ji}}^{2}}} \\ \times \,\,\left\{ {\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}v_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(J;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(m;k)}}D_{{Ji}}^{{(k)}}(\rho \tau )} \right)} \right. \\ \left. { + \,\,{{\omega }_{{Ji}}}v_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(JJ;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(s;k)}}D_{{JJi}}^{{(k)}}(\rho \tau )} \right)} \right\}, \\ \end{gathered} $$
(329)
$$\begin{gathered} S_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}(\tau ) = \frac{{{{{\hat {J}}}^{{ - 2}}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}} - \omega _{{Ji}}^{2}}} \\ \times \,\,\left\{ {{{\omega }_{{Ji}}}v_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(J;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(m;k)}}D_{{Ji}}^{{(k)}}(\rho \tau )} \right)} \right. \\ \left. { + \,\,\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}v_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}\sum\limits_k f_{{{{j}_{1}}{{j}_{2}}}}^{{(JJ;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(s;k)}}D_{{JJi}}^{{(k)}}(\rho \tau )} \right)} \right\}. \\ \end{gathered} $$

Substitution of obtained expressions in (226) leads to a system of \(4N\) homogeneous equations for the functions \(D_{{Ji}}^{{(k)}}(\tau )\) and \(D_{{JJi}}^{{(k)}}(\tau )\) (\(1 \leqslant k \leqslant N\), \(\tau = p,n\)). In matrix notation, the resulting system has the form:

$$\left( {\begin{array}{*{20}{l}} {{{\mathbb{M}}_{{mm}}} - 1}&{{{\mathbb{M}}_{{ms}}}} \\ {{{\mathbb{M}}_{{sm}}}}&{{{\mathbb{M}}_{{ss}}} - 1} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{{\mathbb{D}}_{J}}} \\ {{{\mathbb{D}}_{{JJ}}}} \end{array}} \right) = 0.$$
(330)

The vectors \({{\mathbb{D}}_{J}}\) and \({{\mathbb{D}}_{{JJ}}}\) of dimension \(2N\) consist of the elements

$$\begin{gathered} \mathbb{D}_{J}^{{(k)}} = \left( {\begin{array}{*{20}{c}} {D_{J}^{{(k)}}(p)} \\ {D_{J}^{{(k)}}(n)} \end{array}} \right), \\ \mathbb{D}_{{JJ}}^{{(k)}} = \left( {\begin{array}{*{20}{c}} {D_{{JJ}}^{{(k)}}(p)} \\ {D_{{JJ}}^{{(k)}}(n)} \end{array}} \right) (1 \leqslant k \leqslant N), \\ \end{gathered} $$

while the matrices \({{\mathbb{M}}_{{\alpha \beta }}}\) \((\alpha ,\beta = m,s)\) are the \(2N \times 2N\) matrices, composed of \(2 \times 2\) units

$$\begin{gathered} \mathbb{M}_{{\alpha \beta }}^{{kk{\kern 1pt} '}} = \left( {\begin{array}{*{20}{c}} {\chi _{{ + 1}}^{{(\beta ;k{\kern 1pt} ')}}\mathcal{X}_{{\alpha \beta ;p}}^{{(J;kk{\kern 1pt} ')}}(\omega )}&{\chi _{{ - 1}}^{{(\beta ;k{\kern 1pt} ')}}\mathcal{X}_{{\alpha \beta ;p}}^{{(J;kk{\kern 1pt} ')}}(\omega )} \\ {\chi _{{ - 1}}^{{(\beta ;k{\kern 1pt} ')}}\mathcal{X}_{{\alpha \beta ;n}}^{{(J;kk{\kern 1pt} ')}}(\omega )}&{\chi _{{ + 1}}^{{(\beta ;k{\kern 1pt} ')}}\mathcal{X}_{{\alpha \beta ;n}}^{{(J;kk{\kern 1pt} ')}}(\omega )} \end{array}} \right) \\ (1 \leqslant k,k{\kern 1pt} ' \leqslant N). \\ \end{gathered} $$

Here the following notation for functions of \(\omega \) are introduced:

$$\begin{gathered} \mathcal{X}_{{mm;\tau }}^{{(J;kk{\kern 1pt} ')}}(\omega ) = {{{\hat {J}}}^{{ - 2}}}{{\sum\limits_{{{j}_{1}}{{j}_{2}}} }^{\tau }}f_{{{{j}_{1}}{{j}_{2}}}}^{{(J;k)}}f_{{{{j}_{1}}{{j}_{2}}}}^{{(J;k{\kern 1pt} ')}} \\ \times \,\,\left\{ {\frac{{\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}{{{(u_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}} - {{\omega }^{2}}}}} \right.(1 - y_{{{{j}_{1}}}}^{2} - y_{{{{j}_{2}}}}^{2}) \\ + \,\,\left. {\frac{{\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}{{{(v_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}} - {{\omega }^{2}}}}(y_{{{{j}_{2}}}}^{2} - y_{{{{j}_{1}}}}^{2})} \right\}, \\ \end{gathered} $$
$$\begin{gathered} \mathcal{X}_{{ss;\tau }}^{{(J;kk{\kern 1pt} ')}}(\omega ) = {{{\hat {J}}}^{{ - 2}}}{{\sum\limits_{{{j}_{1}}{{j}_{2}}} }^{\tau }}f_{{{{j}_{1}}{{j}_{2}}}}^{{(JJ;k)}}f_{{{{j}_{1}}{{j}_{2}}}}^{{(JJ;k{\kern 1pt} ')}} \\ \times \,\,\left\{ {\frac{{\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}{{{(u_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}} - {{\omega }^{2}}}}(1 - y_{{{{j}_{1}}}}^{2} - y_{{{{j}_{2}}}}^{2})} \right. \\ \left. { + \,\,\frac{{\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}{{{(v_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}} - {{\omega }^{2}}}}(y_{{{{j}_{2}}}}^{2} - y_{{{{j}_{1}}}}^{2})} \right\}, \\ \end{gathered} $$
(331)
$$\begin{gathered} \mathcal{X}_{{ms;\tau }}^{{(J;kk{\kern 1pt} ')}}(\omega ) = {{{\hat {J}}}^{{ - 2}}}\omega {{\sum\limits_{{{j}_{1}}{{j}_{2}}} }^{\tau }}f_{{{{j}_{1}}{{j}_{2}}}}^{{(J;k)}}f_{{{{j}_{1}}{{j}_{2}}}}^{{(JJ;k{\kern 1pt} ')}} \\ \times \,\,\left\{ {\frac{{u_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}u_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}} - {{\omega }^{2}}}}} \right.(1 - y_{{{{j}_{1}}}}^{2} - y_{{{{j}_{2}}}}^{2}) \\ + \,\,\left. {\frac{{v_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}v_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}} - {{\omega }^{2}}}}(y_{{{{j}_{2}}}}^{2} - y_{{{{j}_{1}}}}^{2})} \right\} \\ \end{gathered} $$

and \(\mathcal{X}_{{sm;\tau }}^{{(J;kk{\kern 1pt} ')}}(\omega ) = \mathcal{X}_{{ms;\tau }}^{{(j;k{\kern 1pt} 'k)}}(\omega )\). The solvability condition for the system of homogeneous equations (330) leads to a secular equation for finding the energy ωJi of thermal phonons

$$\det \left( {\begin{array}{*{20}{l}} {{{\mathbb{M}}_{{mm}}} - 1}&{{{\mathbb{M}}_{{ms}}}} \\ {{{\mathbb{M}}_{{sm}}}}&{{{\mathbb{M}}_{{ss}}} - 1} \end{array}} \right) = 0.$$
(332)

For thermal phonons of anomalous parity, the formal solution of the system of TQRPA equations (225) has the form

$$\begin{gathered} W_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}(\tau ) = \frac{{{{{\hat {J}}}^{{ - 2}}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}} - \omega _{{Ji}}^{2}}}\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}u_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}} \\ \times \,\,\sum\limits_k \sum\limits_{L = J \pm 1} f_{{{{j}_{1}}{{j}_{2}}}}^{{(LJ;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(s;k)}}D_{{LJi}}^{{(k)}}(\rho \tau )} \right), \\ S_{{{{j}_{1}}{{j}_{2}}}}^{{Ji}}(\tau ) = \frac{{{{{\hat {J}}}^{{ - 2}}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}} - \omega _{{Ji}}^{2}}}\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}v_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}} \\ \times \,\,\sum\limits_k \sum\limits_{L = J \pm 1} f_{{{{j}_{1}}{{j}_{2}}}}^{{(LJ;k)}}\left( {\sum\limits_{\rho = \pm 1} \chi _{\rho }^{{(s;k)}}D_{{LJi}}^{{(k)}}(\rho \tau )} \right). \\ \end{gathered} $$
(333)

As in the case of the normal parity phonons, a substitution of the obtained expressions in (226) leads to a system of \(4N\) homogeneous equations for the functions \(D_{{J \pm 1J}}^{{(k)}}(\tau )\) (\(1 \leqslant k \leqslant N\), \(\tau = p,{\kern 1pt} {\kern 1pt} n\)):

$$\left( {\begin{array}{*{20}{l}} {{{\mathbb{M}}_{{J - 1J - 1}}} - 1}&{{{\mathbb{M}}_{{J - 1J + 1}}}} \\ {{{\mathbb{M}}_{{J + 1J - 1}}}}&{{{\mathbb{M}}_{{J + 1J + 1}}} - 1} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{{\mathbb{D}}_{{J - 1J}}}} \\ {{{\mathbb{D}}_{{J + 1J}}}} \end{array}} \right) = 0.$$
(334)

Here \({{\mathbb{M}}_{{LL{\kern 1pt} '}}}\) are the \(2N \times 2N\) matrices, composed of \(2 \times 2\) units

$$\begin{gathered} \mathbb{M}_{{LL{\kern 1pt} '}}^{{(kk{\kern 1pt} ')}} = \left( {\begin{array}{*{20}{c}} {\chi _{{ + 1}}^{{(s;k{\kern 1pt} ')}}\mathcal{X}_{{LL{\kern 1pt} ';p}}^{{(J;kk{\kern 1pt} ')}}(\omega )}&{\chi _{{ - 1}}^{{(s;k)}}\mathcal{X}_{{LL{\kern 1pt} ';p}}^{{(J;kk{\kern 1pt} ')}}(\omega )} \\ {\chi _{{ - 1}}^{{(s;k{\kern 1pt} ')}}\mathcal{X}_{{LL';n}}^{{(J;kk{\kern 1pt} ')}}(\omega )}&{\chi _{{ + 1}}^{{(s;k)}}\mathcal{X}_{{LL{\kern 1pt} ';n}}^{{(J;kk{\kern 1pt} ')}}(\omega )} \end{array}} \right) \\ (1 \leqslant k,k{\kern 1pt} ' \leqslant N), \\ \end{gathered} $$

with the matrix elements

$$\begin{gathered} \mathcal{X}_{{LL{\kern 1pt} ';\tau }}^{{(J;kk{\kern 1pt} ')}}(\omega ) = {{{\hat {J}}}^{{ - 2}}}{{\sum\limits_{{{j}_{1}}{{j}_{2}}} }^{\tau }}f_{{{{j}_{1}}{{j}_{2}}}}^{{(LJ;k)}}f_{{{{j}_{1}}{{j}_{2}};}}^{{(L{\kern 1pt} 'J;k{\kern 1pt} ')}} \\ \times \,\,\left\{ {\frac{{\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}}{{{(u_{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}} - {{\omega }^{2}}}}} \right.(1 - y_{{{{j}_{1}}}}^{2} - y_{{{{j}_{2}}}}^{2}) \\ + \,\,\left. {\frac{{\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}}{{{(v_{{{{j}_{1}}{{j}_{2}}}}^{{( + )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{1}}{{j}_{2}}}}^{{( - )}})}}^{2}} - {{\omega }^{2}}}}(y_{{{{j}_{2}}}}^{2} - y_{{{{j}_{1}}}}^{2})} \right\}, \\ \end{gathered} $$

while the vector \({{\mathbb{D}}_{{LJ}}}\) of \(2N\) dimension has the following components:

$$\mathbb{D}_{{LJ}}^{{(k)}} = \left( {\begin{array}{*{20}{c}} {D_{{LJ}}^{{(k)}}(p)} \\ {D_{{LJ}}^{{(k)}}(n)} \end{array}} \right),\,\,\,\,1 \leqslant k \leqslant N.$$

The thermal phonon energy is found from the condition for the existence of a nontrivial solution for the system (334), therefore, it is a solution to the secular equation

$${\text{det}}\left( {\begin{array}{*{20}{c}} {{{\mathbb{M}}_{{J - 1,J - 1}}} - 1}&{{{\mathbb{M}}_{{J - 1,J + 1}}}} \\ {{{\mathbb{M}}_{{J + 1,J - 1}}}}&{{{\mathbb{M}}_{{J + 1,J + 1}}} - 1} \end{array}} \right) = 0.$$
(335)

APPENDIX C:

1.1 Secular Equation for Charge-Exchange Thermal Phonons

The requirement to preserve the bosonic commutation relations for charge-exchange thermal phonons leads to four orthonormalization conditions for the amplitudes:

• from \([{{\Omega }_{{JMi}}},\Omega _{{J{\kern 1pt} 'M{\kern 1pt} 'i{\kern 1pt} '}}^{\dag }] = {{\delta }_{{JJ{\kern 1pt} '}}}{{\delta }_{{MM{\kern 1pt} '}}}{{\delta }_{{ii{\kern 1pt} '}}}\), it follows that

$$\begin{gathered} \sum\limits_{{{j}_{p}}{{j}_{n}}} \{ (\psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\psi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\psi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\eta _{{{{j}_{p}}{{j}_{n}}}}^{{\lambda i}}\eta _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\eta }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\eta }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\xi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\xi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}})\} = {{\delta }_{{ii{\kern 1pt} '}}}; \\ \end{gathered} $$
(336)

• from \([{{\Omega }_{{JMi}}},{{\Omega }_{{J{\kern 1pt} 'M{\kern 1pt} 'i{\kern 1pt} '}}}] = 0\), it follows that

$$\begin{gathered} \sum\limits_{{{j}_{p}}{{j}_{n}}} \{ (\psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\psi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\psi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\eta _{{{{j}_{p}}{{j}_{n}}}}^{{\lambda i}}\xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\eta _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\eta }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\xi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\xi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\eta }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}})\} = 0; \\ \end{gathered} $$
(337)

• from \([{{\Omega }_{{JMi}}},\widetilde \Omega _{{J{\kern 1pt} 'M{\kern 1pt} 'i{\kern 1pt} '}}^{\dag }] = 0\), it follows that

$$\begin{gathered} \sum\limits_{{{j}_{p}}{{j}_{n}}} \{ (\psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\psi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\psi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\eta _{{{{j}_{p}}{{j}_{n}}}}^{{\lambda i}}\widetilde \eta _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\widetilde \xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\eta }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\eta _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\xi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}})\} = 0; \\ \end{gathered} $$
(338)

• from \([{{\Omega }_{{JMi}}},{{\widetilde \Omega }_{{J{\kern 1pt} 'M{\kern 1pt} 'i{\kern 1pt} '}}}] = 0\), it follows that

$$\begin{gathered} \sum\limits_{{{j}_{p}}{{j}_{n}}} \{ (\psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\tilde {\psi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\phi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ + \,\,(\eta _{{{{j}_{p}}{{j}_{n}}}}^{{\lambda i}}\tilde {\xi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\tilde {\eta }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}}) \\ \,\, + (\tilde {\eta }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \tilde {\xi }_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\eta _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}})\} = 0. \\ \end{gathered} $$
(339)

For effective amplitudes, the above conditions take the form of two relations: (265) and

$$\begin{gathered} \sum\limits_{{{j}_{p}}{{j}_{n}}} \{ (\Psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\Phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \Phi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\Psi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}})(1 - y_{{{{j}_{1}}}}^{2} - y_{{{{j}_{2}}}}^{2}) \hfill \\ + \,\,(H_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}\Xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}} - \Xi _{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}H_{{{{j}_{p}}{{j}_{n}}}}^{{Ji{\kern 1pt} '}})(y_{{{{j}_{n}}}}^{2} - y_{{{{j}_{p}}}}^{2})\} = 0. \hfill \\ \end{gathered} $$
(340)

In proving the fulfillment of the Ikeda sum rule in TQRPA approximation (277), we used the completeness properties of effective amplitudes

$$\begin{gathered} \sum\limits_i G_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}W_{{{{j}_{{p{\kern 1pt} '}}}{{j}_{{n{\kern 1pt} '}}}}}^{{Ji}} = \frac{{{{\delta }_{{{{j}_{p}}{{j}_{{p{\kern 1pt} '}}}}}}{{\delta }_{{{{j}_{n}}{{j}_{{n{\kern 1pt} '}}}}}}}}{{1 - y_{{{{j}_{p}}}}^{2} - y_{n}^{2}}}, \\ \sum\limits_i T_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}S_{{{{j}_{{p{\kern 1pt} '}}}{{j}_{{n{\kern 1pt} '}}}}}^{{Ji}} = \frac{{{{\delta }_{{{{j}_{p}}{{j}_{{p{\kern 1pt} '}}}}}}{{\delta }_{{{{j}_{n}}{{j}_{{n'}}}}}}}}{{y_{{{{j}_{n}}}}^{2} - y_{p}^{2}}}, \\ \sum\limits_i G_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}S_{{{{j}_{{p{\kern 1pt} '}}}{{j}_{{n{\kern 1pt} '}}}}}^{{Ji}} = \sum\limits_i T_{{{{j}_{p}}{{j}_{n}}}}^{{Ji}}W_{{{{j}_{{p{\kern 1pt} '}}}{{j}_{{n{\kern 1pt} '}}}}}^{{Ji}} = 0. \\ \end{gathered} $$
(341)

These properties can be easily obtained by writing down the completeness conditions for phonon amplitudes and then expressing \(\phi , \psi \), etc. through effective amplitudes.

As in the case of charge-neutral phonons, the separable form of the residual interaction makes it possible to reduce the system of TQRPA equations (266) to \(4N\) homogeneous equations

$$\left( {\begin{array}{*{20}{c}} {{{\mathbb{M}}_{ + }} - 1}&{{{\mathbb{M}}_{{ + - }}}} \\ {{{\mathbb{M}}_{{ + - }}}}&{{{\mathbb{M}}_{ - }} - 1} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{{\mathbb{D}}_{ + }}} \\ {{{\mathbb{D}}_{ - }}} \end{array}} \right) = 0.$$
(342)

Here \({{\mathbb{M}}_{\sigma }}\) (\(\sigma = + , - , + - \)) are the \(2N \times 2N\) matrices, composed of \(2 \times 2\) units

$$\begin{gathered} \mathbb{M}_{\sigma }^{{kk{\kern 1pt} '}} = \left( {\begin{array}{*{20}{c}} {\chi _{1}^{{(a;k{\kern 1pt} ')}}\mathcal{X}_{\sigma }^{{(aa;kk{\kern 1pt} ')}}(\omega )}&{\chi _{1}^{{(b;k{\kern 1pt} ')}}\mathcal{X}_{\sigma }^{{(ab;kk{\kern 1pt} ')}}(\omega )} \\ {\chi _{1}^{{(a;k{\kern 1pt} ')}}\mathcal{X}_{\sigma }^{{(ba;kk{\kern 1pt} ')}}(\omega )}&{\chi _{1}^{{(b;k{\kern 1pt} ')}}\mathcal{X}_{\sigma }^{{(bb;kk{\kern 1pt} ')}}(\omega )} \end{array}} \right), \\ 1 \leqslant k,\,\,\,k{\kern 1pt} ' \leqslant N. \\ \end{gathered} $$
(343)

For the normal parity phonons, the indices \(a,{\kern 1pt} b\) assume the values \(a = J\), \(b = JJ\), while for the anomalous parity phonons \(a = (J - 1)J\), \(b = (J + 1)J\). In addition, \(\chi _{1}^{{(J;k)}} = \chi _{1}^{{(m;k)}}\) and \(\chi _{1}^{{(LJ;k)}} = \chi _{1}^{{(s;k)}}\). The functions \(\mathcal{X}_{\sigma }^{{(cd;kk{\kern 1pt} ')}}(\omega )\) (\(c = a,b\), \(d = a,b\)) are defined as

$$\begin{gathered} \mathcal{X}_{ \pm }^{{(cd;kk{\kern 1pt} ')}}(\omega ) = 2{{{\hat {J}}}^{{ - 2}}}\sum\limits_{{{j}_{p}}{{j}_{n}}} f_{{{{j}_{p}}{{j}_{n}}}}^{{(c;k)}}f_{{{{j}_{p}}{{j}_{n}}}}^{{(d;k{\kern 1pt} ')}} \\ \times \,\,\left\{ {\frac{{\varepsilon _{{{{j}_{p}}{{j}_{n}}}}^{{( + )}}{{{(u_{{{{j}_{p}}{{j}_{n}}}}^{{( \pm )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{p}}{{j}_{n}}}}^{{( + )}})}}^{2}} - {{\omega }^{2}}}}} \right.(1 - y_{{{{j}_{p}}}}^{2} - y_{{{{j}_{n}}}}^{2}) \\ + \,\left. {\,\frac{{\varepsilon _{{{{j}_{p}}{{j}_{n}}}}^{{( - )}}{{{(v_{{{{j}_{p}}{{j}_{n}}}}^{{( \mp )}})}}^{2}}}}{{{{{(\varepsilon _{{{{j}_{p}}{{j}_{n}}}}^{{( - )}})}}^{2}} - {{\omega }^{2}}}}(y_{{{{j}_{n}}}}^{2} - y_{{{{j}_{p}}}}^{2})} \right\}, \\ \mathcal{X}_{{ + - }}^{{(cd;kk{\kern 1pt} ')}}(\omega ) = 2\omega {{{\hat {J}}}^{{ - 2}}}\sum\limits_{{{j}_{p}}{{j}_{n}}} f_{{{{j}_{p}}{{j}_{n}}}}^{{(c;k)}}f_{{{{j}_{p}}{{j}_{n}}}}^{{(d;k{\kern 1pt} ')}} \\ \times \,\,\left\{ {\frac{{u_{{{{j}_{p}}{{j}_{n}}}}^{{( + )}}u_{{{{j}_{p}}{{j}_{n}}}}^{{( - )}}}}{{{{{(\varepsilon _{{{{j}_{p}}{{j}_{n}}}}^{{( + )}})}}^{2}} - {{\omega }^{2}}}}} \right.(1 - y_{{{{j}_{p}}}}^{2} - y_{{{{j}_{n}}}}^{2}) \\ + \,\,\left. {\frac{{v_{{{{j}_{p}}{{j}_{n}}}}^{{( + )}}v_{{{{j}_{p}}{{j}_{n}}}}^{{( - )}}}}{{{{{(\varepsilon _{{{{j}_{p}}{{j}_{n}}}}^{{( - )}})}}^{2}} - {{\omega }^{2}}}}(y_{{{{j}_{p}}}}^{2} - y_{{{{j}_{n}}}}^{2})} \right\}. \\ \end{gathered} $$
(344)

The vectors \({{\mathbb{D}}^{{( \pm )}}}\) of the \(2N\) dimension consist of the functions \(D_{J}^{{( \pm ;k)}}\), \(D_{{LJ}}^{{( \pm ;k)}}\) (267)

$$\mathbb{D}_{k}^{{( \pm )}} = \left( {\begin{array}{*{20}{c}} {D_{a}^{{( \pm ;k)}}} \\ {D_{b}^{{( \pm ;k)}}} \end{array}} \right), \,\,\,\,1 \leqslant k \leqslant N.$$

The condition for the existence of a nontrivial solution for system (342) leads to a secular equation for finding the energy of charge-exchange thermal phonons

$${\text{det}}\left( {\begin{array}{*{20}{c}} {{{\mathbb{M}}_{ + }} - 1}&{{{\mathbb{M}}_{{ + - }}}} \\ {{{\mathbb{M}}_{{ + - }}}}&{{{\mathbb{M}}_{ - }} - 1} \end{array}} \right) = 0.$$
(345)

For the QPM Hamiltonian, the secular equation for determining the energy of charge-exchange phonons in hot nuclei is given in our paper [134].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhioev, A.A., Vdovin, A.I. Superoperator Approach to the Theory of Hot Nuclei and Astrophysical Applications: I—Spectral Properties of Hot Nuclei. Phys. Part. Nuclei 53, 885–938 (2022). https://doi.org/10.1134/S1063779622050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622050033

Navigation