Skip to main content
Log in

The Role of Aurora B Kinase in Normal and Cancer Cells

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Aurora kinases are essential players in mammalian cell division. These kinases are involved in the regulation of spindle dynamics, microtubule–kinetochore interactions, and chromosome condensation and orientation during mitosis. At least three members of the Aurora family – Aurora kinases A, B, and C – have been identified in mammals. Aurora B is essential for maintaining genomic stability and normal cell division. Mutations and dysregulation of this kinase are implicated in tumor initiation and progression. In this review, we discuss the functions of Aurora B, the relationship between increased Aurora B activity and carcinogenesis, and the prospects for the use of Aurora B kinase inhibitors in antitumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

CPC:

chromosomal passenger complex

INCENP:

inner centromere protein

SAC:

spindle assembly checkpoint

References

  1. Bischoff, J. R., Anderson, L., Zhu, Y., Mossie, K., Ng, L., Souza, B., Schryver, B., Flanagan, P., Clairvoyant, F., Ginther, C., Chan, C. S., Novotny, M., Slamon, D. J., and Plowman, G. D. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers, EMBO J., 17, 3052-3065, https://doi.org/10.1093/EMBOJ/17.11.3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Francisco, L., Wang, W., and Chan, C. S. (1994) Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation, Mol. Cell. Biol., 14, 4731-4740, https://doi.org/10.1128/MCB.14.7.4731-4740.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glover, D. M., Leibowitz, M. H., McLean, D. A., and Parry, H. (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles, Cell, 81, 95-105, https://doi.org/10.1016/0092-8674(95)90374-7.

    Article  CAS  PubMed  Google Scholar 

  4. Fu, J., Bian, M., Jiang, Q., and Zhang, C. (2007) Roles of Aurora kinases in mitosis and tumorigenesis, Mol. Cancer Res., 5, 1-10, https://doi.org/10.1158/1541-7786.MCR-06-0208.

    Article  CAS  PubMed  Google Scholar 

  5. Sugimoto, K., Urano, T., Zushi, H., Inoue, K., Tasaka, H., Tachibana, M., and Dotsu, M. (2002) Molecular dynamics of Aurora-A kinase in living mitotic cells simultaneously visualized with histone H3 and nuclear membrane protein importinalpha, Cell Structure Funct., 27, 457-467, https://doi.org/10.1247/CSF.27.457.

    Article  CAS  Google Scholar 

  6. Carmena, M., Wheelock, M., Funabiki, H., and Earnshaw, W. C. (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis, Nat. Rev. Mol. Cell Biol., 13, 789-803, https://doi.org/10.1038/NRM3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Broad, A. J., and DeLuca, J. G. (2020) The right place at the right time: Aurora B kinase localization to centromeres and kinetochores, Essays Biochem., 64, 299-311, https://doi.org/10.1042/EBC20190081.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahmed, A., Shamsi, A., Mohammad, T., Hasan, G. M., Islam, A., and Hassan, M. I. (2021) Aurora B kinase: a potential drug target for cancer therapy, J. Cancer Res. Clin. Oncol., 147, 2187-2198, https://doi.org/10.1007/S00432-021-03669-5.

    Article  CAS  PubMed  Google Scholar 

  9. Kimura, M., Matsuda, Y., Yoshioka, T., and Okano, Y. (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3, J. Biol. Chem., 274, 7334-7340, https://doi.org/10.1074/JBC.274.11.7334.

    Article  CAS  PubMed  Google Scholar 

  10. Sasai, K., Katayama, H., Hawke, D. H., and Sen, S. (2016) Aurora-C interactions with survivin and INCENP reveal shared and distinct features compared with Aurora-B chromosome passenger protein complex, PLoS One, 11, e0157305, https://doi.org/10.1371/JOURNAL.PONE.0157305.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vader, G., Medema, R. H., and Lens, S. M. A. (2006) The chromosomal passenger complex: guiding Aurora-B through mitosis, J. Cell Biol., 173, 833-837, https://doi.org/10.1083/JCB.200604032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hindriksen, S., Lens, S. M. A., and Hadders, M. A. (2017) The ins and outs of Aurora B inner centromere localization, Front. Cell Dev. Biol., 5, 112, https://doi.org/10.3389/FCELL.2017.00112.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bishop, J. D., and Schuniacher, J. M. (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B Kinase stimulates Aurora B kinase activity, J. Biol. Chem., 277, 27577-27580, https://doi.org/10.1074/JBC.C200307200.

    Article  CAS  PubMed  Google Scholar 

  14. Honda, R., Körner, R., and Nigg, E. A. (2003) Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis, Mol. Biol. Cell, 14, 3325-3341, https://doi.org/10.1091/MBC.E02-11-0769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McVey, S. L., Cosby, J. K., and Nannas, N. J. (2021) Aurora B tension sensing mechanisms in the kinetochore ensure accurate chromosome segregation, Int. J. Mol. Sci., 22, 8818, https://doi.org/10.3390/IJMS22168818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krenn, V., and Musacchio, A. (2015) The Aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling, Front. Oncol., 5, 225, https://doi.org/10.3389/FONC.2015.00225.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Van der Horst, A., Vromans, M. J. M., Bouwman, K., van der Waal, M. S., Hadders, M. A., and Lens, S. M. A. (2015) Inter-domain cooperation in INCENP promotes Aurora B relocation from centromeres to microtubules, Cell Rep., 12, 380-387, https://doi.org/10.1016/J.CELREP.2015.06.038.

    Article  CAS  PubMed  Google Scholar 

  18. Caldas, G. V., DeLuca, K. F., and DeLuca, J. G. (2013) KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity, J. Cell Biol., 203, 957-969, https://doi.org/10.1083/JCB.201306054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hadders, M. A., Hindriksen, S., Truong, M. A., Mhaskar, A. N., Pepijn Wopken, J., Vromans, M. J. M., and Lens, S. M. A. (2020) Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis, J. Cell Biol., 219, e201907087, https://doi.org/10.1083/JCB.201907087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murata-Hori, M., Tatsuka, M., and Wang, Y. L. (2002) Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis, Mol. Biol. Cell, 13, 1099-1108, https://doi.org/10.1091/MBC.01-09-0467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Titova, E., Shagieva, G., Ivanova, O., Domnina, L., Domninskaya, M., Strelkova, O., Khromova, N., Kopnin, P., Chernyak, B., Skulachev, V., and Dugina, V. (2018) Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth, Cell Cycle, 17, 1797-1811, https://doi.org/10.1080/15384101.2018.1496748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duro, E., and Marston, A. L. (2015) From equator to pole: splitting chromosomes in mitosis and meiosis, Genes Dev., 29, 109-122, https://doi.org/10.1101/GAD.255554.114.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Foley, E. A., and Kapoor, T. M. (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore, Nat. Rev. Mol. Cell Biol., 14, 25-37, https://doi.org/10.1038/NRM3494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nezi, L., and Musacchio, A. (2009) Sister chromatid tension and the spindle assembly checkpoint, Curr. Opin. Cell Biol., 21, 785-795, https://doi.org/10.1016/J.CEB.2009.09.007.

    Article  CAS  PubMed  Google Scholar 

  25. Hauf, S., Cole, R. W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Heckel, A., van Meel, J., Rieder, C. L., and Peters, J.-M. (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint, J. Cell Biol., 161, 281-294, https://doi.org/10.1083/jcb.200208092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sen, O., Harrison, J. U., Burroughs, N. J., and McAinsh, A. D. (2021) Kinetochore life histories reveal an Aurora-B-dependent error correction mechanism in anaphase, Dev. Cell, 56, 3082, https://doi.org/10.1016/J.DEVCEL.2021.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rieder, C. L., Cole, R. W., Khodjakov, A., and Sluder, G. (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores, J. Cell Biol., 130, 941-948, https://doi.org/10.1083/JCB.130.4.941.

    Article  CAS  PubMed  Google Scholar 

  28. DeLuca, J. G., Gall, W. E., Ciferri, C., Cimini, D., Musacchio, A., and Salmon, E. D. (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1, Cell, 127, 969-982, https://doi.org/10.1016/J.CELL.2006.09.047.

    Article  CAS  PubMed  Google Scholar 

  29. DeLuca, J. G., and Musacchio, A. (2012) Structural organization of the kinetochore-microtubule interface, Curr. Opin. Cell Biol., 24, 48-56, https://doi.org/10.1016/J.CEB.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  30. DeLuca, K. F., Lens, S. M. A., and DeLuca, J. G. (2011) Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis, J. Cell Sci., 124, 622-634, https://doi.org/10.1242/JCS.072629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoo, T. Y., Choi, J. M., Conway, W., Yu, C. H., Pappu, R. V., and Needleman, D. J. (2018) Measuring NDC80 binding reveals the molecular basis of tension-dependent kinetochore-microtubule attachments, eLife, 7, e36392, https://doi.org/10.7554/ELIFE.36392.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Etemad, B., Kuijt, T. E. F., and Kops, G. J. P. L. (2015) Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint, Nat. Commun., 6, 8987, https://doi.org/10.1038/NCOMMS9987.

    Article  CAS  PubMed  Google Scholar 

  33. Musacchio, A., and Salmon, E. D. (2007) The spindle-assembly checkpoint in space and time, Nat. Rev. Mol. Cell Biol., 8, 379-393, https://doi.org/10.1038/NRM2163.

    Article  CAS  PubMed  Google Scholar 

  34. Mierzwa, B., and Gerlich, D. W. (2014) Cytokinetic abscission: molecular mechanisms and temporal control, Dev. Cell, 31, 525-538, https://doi.org/10.1016/J.DEVCEL.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  35. Gisselsson, D. (2008) Classification of chromosome segregation errors in cancer, Chromosoma, 117, 511-519, https://doi.org/10.1007/S00412-008-0169-1.

    Article  PubMed  Google Scholar 

  36. Petsalaki, E., and Zachos, G. (2016) Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint, Nat. Commun., 7, 11451, https://doi.org/10.1038/NCOMMS11451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goto, H., Yasui, Y., Kawajiri, A., Nigg, E. A., Terada, Y., Tatsuka, M., Nagata, K., and Inagaki, M. (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process, J. Biol. Chem., 278, 8526-8530, https://doi.org/10.1074/jbc.M210892200.

    Article  CAS  PubMed  Google Scholar 

  38. Christ, L., Raiborg, C., Wenzel, E. M., Campsteijn, C., and Stenmark, H. (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery, Trends Biochem. Sci., 42, 42-56, https://doi.org/10.1016/J.TIBS.2016.08.016.

    Article  CAS  PubMed  Google Scholar 

  39. Borah, N. A., and Reddy, M. M. (2021) Aurora kinase B inhibition: a potential therapeutic strategy for cancer, Molecules, 26, 1981, https://doi.org/10.3390/MOLECULES26071981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. González-Loyola, A., Fernández-Miranda, G., Trakala, M., Partida, D., Samejima, K., Ogawa, H., Cañamero, M., de Martino, A., Martínez-Ramírez, Á., de Cárcer, G., Pérez de Castro, I., Earnshaw, W. C., and Malumbres, M. (2015) Aurora B overexpression causes aneuploidy and p21Cip1 repression during tumor development, Mol. Cell. Biol., 35, 3566-3578, https://doi.org/10.1128/MCB.01286-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith, S. L., Bowers, N. L., Betticher, D. C., Gautschi, O., Ratschiller, D., Hoban, P. R., Booton, R., Santibáñez-Koref, M. F., and Heighway, J. (2005) Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability, Br. J. Cancer, 93, 719-729, https://doi.org/10.1038/sj.bjc.6602779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vischioni, B., Oudejans, J. J., Vos, W., Rodriguez, J. A., and Giaccone, G. (2006) Frequent overexpression of aurora B kinase, a novel drug target, in non-small cell lung carcinoma patients, Mol. Cancer Ther., 5, 2905-2913, https://doi.org/10.1158/1535-7163.MCT-06-0301.

    Article  CAS  PubMed  Google Scholar 

  43. Sorrentino, R., Libertini, S., Pallante, P. L., Troncone, G., Palombini, L., Bavetsias, V., Spalletti-Cernia, D., Laccetti, P., Linardopoulos, S., Chieffi, P., Fusco, A., and Portella, G. (2005) Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation, J. Clin. Endocrinol. Metab., 90, 928-935, https://doi.org/10.1210/JC.2004-1518.

    Article  CAS  PubMed  Google Scholar 

  44. Huang, D., Huang, Y., Huang, Z., Weng, J., Zhang, S., and Gu, W. (2019) Relation of AURKB over-expression to low survival rate in BCRA and reversine-modulated aurora B kinase in breast cancer cell lines, Cancer Cell Int., 19, 166, https://doi.org/10.1186/S12935-019-0885-Z.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chieffi, P., Cozzolino, L., Kisslinger, A., Libertini, S., Staibano, S., Mansueto, G., De Rosa, G., Villacci, A., Vitale, M., Linardopoulos, S., Portella, G., and Tramontano, D. (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation, Prostate, 66, 326-333, https://doi.org/10.1002/PROS.20345.

    Article  CAS  PubMed  Google Scholar 

  46. Pohl, A., Azuma, M., Zhang, W., Yang, D., Ning, Y., Winder, T., Danenberg, K., and Lenz, H. J. (2011) Pharmacogenetic profiling of Aurora kinase B is associated with overall survival in metastatic colorectal cancer, Pharmacogenom. J., 11, 93-99, https://doi.org/10.1038/TPJ.2010.18.

    Article  CAS  Google Scholar 

  47. Chang, X., Zhang, T., Wang, Q., Rathore, M. G., Reddy, K., Chen, H., Shin, S. H., Ma, W. Y., Bode, A. M., and Dong, Z. (2020) HI-511 overcomes melanoma drug resistance via targeting AURKB and BRAF V600E, Theranostics, 10, 9721-9740, https://doi.org/10.7150/THNO.44342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Failes, T. W., Mitic, G., Abdel-Halim, H., Po’uha, S. T., Liu, M., Hibbs, D. E., and Kavallaris, M. (2012) Evolution of resistance to Aurora kinase B inhibitors in leukaemia cells, PLoS One, 7, e30734, https://doi.org/10.1371/JOURNAL.PONE.0030734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skaland, I., Janssen, E. A. M., Gudlaugsson, E., Hui Ru Guo, L., and Baak, J. P. A. (2009) The prognostic value of the proliferation marker Phosphohistone H3 (PPH3) in luminal, basal-like and triple negative phenotype invasive lymph node-negative breast cancer, Cell. Oncol., 31, 261-271, https://doi.org/10.3233/CLO-2009-0464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Den Hollander, J., Rimpi, S., Doherty, J. R., Rudelius, M., Buck, A., Hoellein, A., Kremer, M., Graf, N., Scheerer, M., Hall, M. A., Goga, A., von Bubnoff, N., Duyster, J., Peschel, C., Cleveland, J. L., Nilsson, J. A., and Keller, U. (2010) Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state, Blood, 116, 1498-1505, https://doi.org/10.1182/BLOOD-2009-11-251074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borah, N. A., Sradhanjali, S., Barik, M. R., Jha, A., Tripathy, D., Kaliki, S., Rath, S., Raghav, S. K., Patnaik, S., Mittal, R., and Reddy, M. M. (2021) Aurora kinase B expression, its regulation and therapeutic targeting in human retinoblastoma, Invest. Ophthalmol. Vis. Sci., 62, 16, https://doi.org/10.1167/IOVS.62.3.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bogen, D., Wei, J. S., Azorsa, D. O., Ormanoglu, P., Buehler, E., Guha, R., Keller, J. M., Mathews Griner, L. A., Ferrer, M., Song, Y. K., Liao, H., Mendoza, A., Gryder, B. E., Sindri, S., He, J., Wen, X., Zhang, S., Shern, J. F., Yohe, M. E., Taschner-Mandl, S., Shohet, J. M., Thomas, C. J., Martin, S. E., Ambros, P. F., and Khan, J. (2015) Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma, Oncotarget, 6, 35247-35262, https://doi.org/10.18632/ONCOTARGET.6208.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Teng, C.L., Hsieh, Y. C., Phan, L., Shin, J., Gully, C., Velazquez-Torres, G., Skerl, S., Yeung, S. C. J., Hsu, S. L., and Lee, M. H. (2012) FBXW7 is involved in Aurora B degradation, Cell Cycle, 11, 4059-4068, https://doi.org/10.4161/CC.22381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gully, C. P., Velazquez-Torres, G., Shin, J. H., Fuentes-Mattei, E., Wang, E., Carlock, C., Chen, J., Rothenberg, D., Adams, H. P., Choi, H. H., Guma, S., Phan, L., Chou, P. C., Su, C. H., Zhang, F., Chen, J. S., Yang, T. Y., Yeung, S. C. J., and Lee, M. H. (2012) Aurora B kinase phosphorylates and instigates degradation of p53, Proc. Natl. Acad. Sci. USA, 109, E1513-E1522, https://doi.org/10.1073/PNAS.1110287109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kanagasabai, T., Venkatesan, T., Natarajan, U., Alobid, S., Alhazzani, K., Algahtani, M., and Rathinavelu, A. (2020) Regulation of cell cycle by MDM2 in prostate cancer cells through Aurora Kinase-B and p21WAF1/CIP1 mediated pathways, Cell. Signal., 66, 109435, https://doi.org/10.1016/J.CELLSIG.2019.109435.

    Article  CAS  PubMed  Google Scholar 

  56. Schecher, S., Walter, B., Falkenstein, M., Macher-Goeppinger, S., Stenzel, P., Krümpelmann, K., Hadaschik, B., Perner, S., Kristiansen, G., Duensing, S., Roth, W., and Tagscherer, K. E. (2017) Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer, Int. J. Cancer, 141, 1643-1653, https://doi.org/10.1002/IJC.30864.

    Article  CAS  PubMed  Google Scholar 

  57. Nair, J. S., Ho, A. L., Tse, A. N., Coward, J., Cheema, H., Ambrosini, G., Keen, N., Schwartz, G. K. (2009) Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780, Mol. Biol. Cell, 20, 2218-2228, https://doi.org/10.1091/MBC.E08-08-0885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hartsink-Segers, S. A., Zwaan, C. M., Exalto, C., Luijendijk, M. W. J., Calvert, V. S., Petricoin, E. F., Evans, W. E., Reinhardt, D., De Haas, V., Hedtjärn, M., Hansen, B. R., Koch, T., Caron, H. N., Pieters, R., and Den Boer, M. L. (2013) Aurora kinases in childhood acute leukemia: the promise of aurora B as therapeutic target, Leukemia, 27, 560, https://doi.org/10.1038/LEU.2012.256.

    Article  CAS  PubMed  Google Scholar 

  59. Kovacs, A. H., Zhao, D., and Hou, J. (2023) Aurora B inhibitors as cancer therapeutics, Molecules, 28, 3385, https://doi.org/10.3390/MOLECULES28083385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adams, N. D., Adams, J. L., Burgess, J. L., Chaudhari, A. M., Copeland, R. A., Donatelli, C. A., Drewry, D. H., Fisher, K. E., Hamajima, T., Hardwicke, M. A., Huffman, W. F., Koretke-Brown, K. K., Lai, Z. V., McDonald, O. B., Nakamura, H., Newlander, K. A., Oleykowski, C. A., Parrish, C. A., Patrick, D. R., Plant, R., Sarpong, M. A., Sasaki, K., Schmidt, S. J., Silva, D. J., Sutton, D., Tang, J., Thompson, C. S., Tummino, P. J., Wang, J. C., Xiang, H., Yang, J., and Dhanak, D. (2010) Discovery of GSK1070916, a potent and selective inhibitor of Aurora B/C kinase, J. Med. Chem., 53, 3973-4001, https://doi.org/10.1021/JM901870Q.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, Y., Shan, S., Li, Z. Bin., Xin, L. J., Pan, D. S., Yang, Q. J., Liu, Y. P., Yue, X. P., Liu, X. R., Gao, J. Z., Zhang, J. W., Ning, Z. Q., and Lu, X. P. (2017) CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency, Cancer Sci., 108, 469-477, https://doi.org/10.1111/CAS.13141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Falchook, G. S., Bastida, C. C., and Kurzrock, R. (2015) Aurora kinase inhibitors in oncology clinical trials: current state of the progress, Semin. Oncol., 42, 832-848, https://doi.org/10.1053/J.SEMINONCOL.2015.09.022.

    Article  CAS  PubMed  Google Scholar 

  63. Boss, D. S., Witteveen, P. O., van der Sar, J., Lolkema, M. P., Voest, E. E., Stockman, P. K., Ataman, O., Wilson, D., Das, S., and Schellens, J. H. (2011) Clinical evaluation of AZD1152, an i.v. inhibitor of Aurora B kinase, in patients with solid malignant tumors, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol., 22, 431-437, https://doi.org/10.1093/ANNONC/MDQ344.

    Article  CAS  Google Scholar 

  64. Schwartz, G. K., Carvajal, R. D., Midgley, R., Rodig, S. J., Stockman, P. K., Ataman, O., Wilson, D., Das, S., Shapiro, G. I. (2013) Phase I study of barasertib (AZD1152), a selective inhibitor of Aurora B kinase, in patients with advanced solid tumors, Invest. New Drugs, 31, 370-380, https://doi.org/10.1007/S10637-012-9825-7.

    Article  CAS  PubMed  Google Scholar 

  65. Löwenberg, B., Muus, P., Ossenkoppele, G., Rousselot, P., Cahn, J.Y., Ifrah, N., Martinelli, G., Amadori, S., Berman, E., Sonneveld, P., Jongen-Lavrencic, M., Rigaudeau, S., Stockman, P., Goudie, A., Faderl, S., Jabbour, E., and Kantarjian, H. (2011) Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia, Blood, 118, 6030-6036, https://doi.org/10.1182/BLOOD-2011-07-366930.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tsuboi, K., Yokozawa, T., Sakura, T., Watanabe, T., Fujisawa, S., Yamauchi, T., Uike, N., Ando, K., Kihara, R., Tobinai, K., Asou, H., Hotta, T., and Miyawaki, S. (2011) A Phase I study to assess the safety, pharmacokinetics and efficacy of barasertib (AZD1152), an Aurora B kinase inhibitor, in Japanese patients with advanced acute myeloid leukemia, Leuk. Res., 35, 1384-1389, https://doi.org/10.1016/J.LEUKRES.2011.04.008.

    Article  CAS  PubMed  Google Scholar 

  67. Kantarjian, H. M., Martinelli, G., Jabbour, E. J., Quintás-Cardama, A., Ando, K., Bay, J. O., Wei, A., Gröpper, S., Papayannidis, C., Owen, K., Pike, L., Schmitt, N., Stockman, P. K., and Giagounidis, A. (2013) Stage I of a phase 2 study assessing the efficacy, safety, and tolerability of barasertib (AZD1152) versus low-dose cytosine arabinoside in elderly patients with acute myeloid leukemia, Cancer, 119, 2611-2619, https://doi.org/10.1002/CNCR.28113.

    Article  CAS  PubMed  Google Scholar 

  68. Dennis, M., Davies, M., Oliver, S., D’Souza, R., Pike, L., and Stockman, P. (2012) Phase I study of the Aurora B kinase inhibitor barasertib (AZD1152) to assess the pharmacokinetics, metabolism and excretion in patients with acute myeloid leukemia, Cancer Chemother. Pharmacol., 70, 461-469, https://doi.org/10.1007/S00280-012-1939-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McNeish, I., Anthoney, A., Loadman, P., Berney, D., Joel, S., Halford, S. E. R., Buxton, E., Race, A., Ikram, M., Scarsbrook, A., Patikis, A., Rockall, A., Dobbs, N. A., and Twelves, C. (2013) A phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of the selective aurora kinase inhibitor GSK1070916A, J. Clin. Oncol., 31, 2525-2525, https://doi.org/10.1200/JCO.2013.31.15_SUPPL.2525.

    Article  Google Scholar 

  70. Borthakur, G., Dombret, H., Schafhausen, P., Brummendorf, T. H., Boisse, N., Jabbour, E., Mariani, M., Capolongo, L., Carpinelli, P., Davite, C., Kantarjian, H., and Cortes, J. E. (2015) A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy, Haematologica, 100, 898-904, https://doi.org/10.3324/HAEMATOL.2014.115279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, X., Liu, W., Cao, Q., Chen, C., Chen, Z., Xu, Z., Li, W., Liu, F., and Yao, X. (2014) Inhibition of Aurora B by CCT137690 sensitizes colorectal cells to radiotherapy, J. Exp. Clin. Cancer Res., 33, 13, https://doi.org/10.1186/1756-9966-33-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tao, Y., Leteur, C., Calderaro, J., Girdler, F., Zhang, P., Frascogna, V., Varna, M., Opolon, P., Castedo, M., Bourhis, J., Kroemer, G., and Deutsch, E. (2009) The aurora B kinase inhibitor AZD1152 sensitizes cancer cells to fractionated irradiation and induces mitotic catastrophe, Cell Cycle, 8, 3172-3181, https://doi.org/10.4161/cc.8.19.9729.

    Article  CAS  PubMed  Google Scholar 

  73. Sak, A., Stuschke, M., Groneberg, M., Kübler, D., Pöttgen, C., and Eberhardt, W. E. E. (2012) Inhibiting the aurora B kinase potently suppresses repopulation during fractionated irradiation of human lung cancer cell lines, Int. J. Radiat. Oncol. Biol. Phys., 84, 492-499, https://doi.org/10.1016/J.IJROBP.2011.12.021.

    Article  CAS  PubMed  Google Scholar 

  74. Liu, N., Wang, Y. A., Sun, Y., Ecsedy, J., Sun, J., Li, X., and Wang, P. (2019) Inhibition of Aurora A enhances radiosensitivity in selected lung cancer cell lines, Respir. Res., 20, 230, https://doi.org/10.1186/S12931-019-1194-8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project 23-15-00433).

Author information

Authors and Affiliations

Authors

Contributions

V.D. conceived and supervised the study; E.T. and G.Sh. wrote the manuscript; G.Sh. and P.K. edited the manuscript.

Corresponding author

Correspondence to Ekaterina Titova.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain description of studies involving human participants or animals performed by any of the authors.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, E., Shagieva, G., Dugina, V. et al. The Role of Aurora B Kinase in Normal and Cancer Cells. Biochemistry Moscow 88, 2054–2062 (2023). https://doi.org/10.1134/S0006297923120088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120088

Keywords

Navigation