Skip to main content
Log in

Function of the Conserved Non-Functional Residues in Apomyoglobin – to Determine and to Preserve Correct Topology of the Protein

  • MINI-REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this paper the answer to O. B. Ptitsyn’s question “What is the role of conserved non-functional residues in apomyoglobin” is presented, which is based on the research results of three laboratories. The role of conserved non-functional apomyoglobin residues in formation of native topology in the molten globule state of this protein is revealed. This fact allows suggesting that the conserved non-functional residues in this protein are indispensable for fixation and maintaining main elements of the correct topology of its secondary structure in the intermediate state. The correct topology is a native element in the intermediate state of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. P. Wright, The Scripss Research Institute, La Jolla, CA 92037, USA.

  2. H. Roder, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111.

Abbreviations

A, G and H:

main alpha-helices of apoMb

L:

an intermediate state in the folding of apoMb

MG:

molten globule state

N and U:

native and unfolded states of protein

SW apoMb:

wild type of sperm-whale apomyoglobin

References

  1. Kim, P. S., and Baldwin, R. L. (1990) Intermediates in the folding reactions of small proteins, Ann. Rev. Biochem., 59, 631-660, https://doi.org/10.1146/annurev.bi.59.070190.003215.

    Article  CAS  PubMed  Google Scholar 

  2. Ptitsyn, O. B. (1991) How does protein synthesis give rise to the 3D-structure? FEBS Lett., 285, 176-181, https://doi.org/10.1016/0014-5793(91)80799-9.

    Article  CAS  PubMed  Google Scholar 

  3. Dill, K. A., Fiebig, K. M., and Chan, H. S. (1993) Cooperativity in protein folding kinetics, Proc. Natl. Acad. Sci. USA, 90, 1942-1946, https://doi.org/10.1073/pnas.90.5.1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ptitsyn, O. B. (1973) Stages in the mechanism of self-organisation of protein molecules, Dokl. Akad. Nauk SSSR, 210, 1213-1215.

    CAS  PubMed  Google Scholar 

  5. Karplus, M., and Weaver, D. L. (1994) Protein folding dynamics: the diffusion-collision model and experimental data, Protein Sci., 3, 650-668, https://doi.org/10.1002/pro.5560030413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abkevich, V. I., Gutin, A. M., and Shakhnovich, E. I. (1994) Specific nucleus as the transition state for protein folding: evidence from the lattice model, Biochemistry, 33, 10026-10036, https://doi.org/10.1021/bi00199a029.

    Article  CAS  PubMed  Google Scholar 

  7. Guo, Z., and Thirumalai, D. (1995) Kinetics of protein folding: nucleation mechanism, time scales, and pathways, Biopolymers, 36, 83-102, https://doi.org/10.1002/bip.360360108.

    Article  CAS  Google Scholar 

  8. Wolynes, P. G., Onuchic, J. N., and Thirumalai, D. (1995) Navigating the folding routes, Science, 267, 1619-1620, https://doi.org/10.1126/science.7886447.

    Article  CAS  PubMed  Google Scholar 

  9. Finkelstein, A. V., and Badretdinov, A. Y. (1997) Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold, Fold. Des., 2, 115-121, https://doi.org/10.1016/s1359-0278(97)00016-3.

    Article  CAS  PubMed  Google Scholar 

  10. Fersht, A. R. (1995) Optimization of rates of protein folding: The nucleation-condensation mechanism and its implications, Proc. Natl. Acad. Sci. USA, 92, 10869-10873, https://doi.org/10.1073/pnas.92.24.10869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shakhnovich, E. I., Abkevich, V., and Ptitsyn, O. B. (1996) Conserved residues and the mechanism of protein folding, Nature, 379, 96-98, https://doi.org/10.1038/379096a0.

    Article  CAS  PubMed  Google Scholar 

  12. Ptitsyn, O. B., and Ting, K. L. (1999) Non-functional conserved residues in globins and their possible role as a folding nucleus, J. Mol. Biol., 291, 671-682, https://doi.org/10.1006/jmbi.1999.2920.

    Article  CAS  PubMed  Google Scholar 

  13. Jennings, P., and Wright, P. E. (1993) Formation of a molten globule intermediate early in the kinetic folding pathway of myoglobin, Science, 262, 892-896, https://doi.org/10.1126/science.8235610.

    Article  CAS  PubMed  Google Scholar 

  14. Samatova, E. N., Melnik, B. S., Balobanov, V. A., Katina, N. S., Dolgikh, D. A., Semisotnov, G. V., Finkelstein, A. V., and Bychkova, V. E. (2010) Folding intermediate and folding nucleus for I-N and U-I-N transitions in apomyoglobin: Contributions by conserved and non-conserved residues, Biophys. J., 98, 1694-1702, https://doi.org/10.1016/j.bpj.2009.12.4326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elieser, D., Jennings, P. A., Wright, P. E., Doniach, S., Hodgson, K. O., and Tsuruta, H. (1995) The radius of gyration of an apomyoglobin folding intermediate, Science, 270, 487-488, https://doi.org/10.1126/science.270.5235.487.

    Article  Google Scholar 

  16. Hughson, F. M., Wright, P. E., and Baldwin, R. L. (1990) Structural characterization of a partly folded apomyoglobin intermediate, Science, 249, 1544-1548, https://doi.org/10.1126/science.2218495.

    Article  CAS  PubMed  Google Scholar 

  17. Jamin, M., and Baldwin, R. L. (1998) Two forms of the pH 4 folding intermediate of apomyoglobin, J. Mol. Biol., 276, 491-504, https://doi.org/10.1006/jmbi.1997.1543.

    Article  CAS  PubMed  Google Scholar 

  18. Shastry, M. C. R., and Roder, H. (2004) Evidence for barrier-limited protein folding kinetics on the microsecond time scale, Nat. Struct. Biol., 5, 385-392, https://doi.org/10.1038/nsb0598-385.

    Article  Google Scholar 

  19. Roder, H., Maki, K., and Cheng, H. (2006) Early events in protein folding explored by rapid mixing methods, Chem. Rev., 106, 1836-1861, https://doi.org/10.1021/cr040430y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, M., Beresneva, O., Rosario, R., and Roder, H. (2012) Microsecond folding dynamics of apomyoglobin at acidic pH, J. Phys. Chem. B, 116, 7014-7025, https://doi.org/10.1021/jp3012365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizukami, T., Xu, M., Fazlieva, R., Bychkova, V. E., and Roder, H. (2018) Complex folding landscape of apomyoglobin at acidic pH revealed by ultrafast kinetic analysis of core mutants, J. Phys. Chem. B, 122, 11228-11239, https://doi.org/10.1021/acs.jpcb.8b06895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishimura, C., Dyson, H. J., and Wright, P. E. (2006) Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin, J. Mol. Biol., 355, 139-156, https://doi.org/10.1016/j.jmb.2005.10.047.

    Article  CAS  PubMed  Google Scholar 

  23. Aoto, P. C., Nishimura, C., Dyson, H. J., and Wright, P. E. (2014) Probing the non-native H helix translocation in apomyoglobin folding intermediates, Biochemistry, 53, 3767-3780, https://doi.org/10.1021/bi500478m.

    Article  CAS  PubMed  Google Scholar 

  24. Musto, R., Bigotti, M. G., Travaglini-Allocatelli, C., Brunori, M., and Cutruzzola, F. (2004) Folding of Aplysia limacina apomyoglobin involves an intermediate in common with other evolutionarily distant globins, Biochemistry, 43, 230-236, https://doi.org/10.1021/bi035319l.

    Article  CAS  PubMed  Google Scholar 

  25. Balobanov, V. A., Ilyina, N. B., Katina, N. S., Kashparov, I. A., Dolgikh, D. A., and Bychkova, V. E. (2010) Kinetics of interaction between apomyoglobin and phospholipid membranes, Mol. Biol. (Moscow), 44, 624-632, https://doi.org/10.1134/S0026893310040187.

    Article  CAS  Google Scholar 

  26. Bychkova, V. E., Basova, L. V., and Balobanov, V. A. (2014) How membrane surface affects protein structure, Biochemistry (Moscow), 79, 1483-1514, https://doi.org/10.1134/S0006297914130045.

    Article  CAS  PubMed  Google Scholar 

  27. Ptitsyn, O. B. (1998) Protein folding and protein evolution: common folding nucleus in different subfamily of c-type cytochromes? J. Mol. Biol., 278, 655-666, https://doi.org/10.1006/jmbi.1997.1620.

    Article  CAS  PubMed  Google Scholar 

  28. Rotondi, K. S., and Gierasch, L. M. (2003) Local sequence information in cellular retinoic acid-binding protein I: specific residue roles in beta-turns, Biopolymers, 71, 638-651, https://doi.org/10.1002/bip.10592.

    Article  CAS  PubMed  Google Scholar 

  29. Rotondi, K. S., and Gierasch, L. M. (2003) Role of local sequence in the folding of cellular retinoic acid-binding protein I: structural propensities of reverse turns, Biochemistry, 42, 7976-7985, https://doi.org/10.1021/bi034304k.

    Article  CAS  PubMed  Google Scholar 

  30. Gunasekaran, K., Haqler, A. T., and Gierasch, L. M. (2004) Sequence and structural analysis of cellular retinoic acid-binding proteins reveal a network of conserved hydrophobic interactions, Proteins, 54, 179-194, https://doi.org/10.1002/prot.10520.

    Article  CAS  PubMed  Google Scholar 

  31. Ting, K.-L. H., and Jernigan, R. L. (2002) Identifiing a folding nucleus for the lysozyme/alfa-lactalbumin family from sequence conservation clusters, J. Mol. Evol., 54, 425-436, https://doi.org/10.1007/s00239-001-0033-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors express their gratitude to P.E. Wright for his help, support and structural data, H. Roder and his collaborators for excellent experiments and valuable discussions, to A. V. Finkelstein for valuable remarks, E. V. Serebrova for help in preparing the manuscript, and all collaborators participated in the study of apomyoglobin.

Author information

Authors and Affiliations

Authors

Contributions

V.E.B. and D.A.D carried out additional analysis of the experimental data; V.E.B., D.A.D., and V.A.B. participated in the paper writing.

Corresponding author

Correspondence to Vitalii A. Balobanov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Dedicated to memory of Oleg B. Ptitsyn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkova, V.E., Dolgikh, D.A. & Balobanov, V.A. Function of the Conserved Non-Functional Residues in Apomyoglobin – to Determine and to Preserve Correct Topology of the Protein. Biochemistry Moscow 88, 1905–1909 (2023). https://doi.org/10.1134/S0006297923110184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923110184

Keywords

Navigation