Skip to main content
Log in

Structural and Functional Properties of Tropomyosin Isoforms Tpm4.1 and Tpm2.1

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tropomyosin (Tpm) is one of the most important partners of actin filament that largely determines its properties. In animal organisms, there are different isoforms of Tpm, which are believed to be involved in the regulation of various cellular functions. However, molecular mechanisms by which various Tpm cytoplasmic regulate of the functioning of actin filaments are still poorly understood. Here, we investigated the properties of Tpm2.1 and Tpm4.1 isoforms and compared them to each other and to more extensively studied Tpm isoforms. Tpm2.1 and Tpm4.1 were very similar in their affinity to F-actin, thermal stability, and resistance to limited proteolysis by trypsin, but differed markedly in the viscosity of their solutions and thermal stability of their complexes with F-actin. The main difference of Tpm2.1 and Tpm4.1 from other Tpm isoforms (e.g., Tpm1.6 and Tpm1.7) was their extremely low thermal stability as measured by the CD and DSC methods. We suggested the possible causes of this instability based on comparing the amino acid sequences of Tpm4.1 and Tpm2.1 with the sequences of Tpm1.6 and Tpm1.7 isoforms, respectively, that have similar exon structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

DSC:

differential scanning calorimetry

F-actin:

fibrillar actin

Tpm:

tropomyosin

References

  1. Gunning, P., O’Neill, G., and Hardeman, E. (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space, Physiol. Rev., 88, 1-35, https://doi.org/10.1152/physrev.00001.2007.

    Article  CAS  PubMed  Google Scholar 

  2. Nevzorov, I. A., and Levitsky, D. I. (2011) Tropomyosin: double helix from the protein world, Biochemistry (Moscow), 76, 1507-1527, https://doi.org/10.1134/S0006297911130098.

    Article  CAS  PubMed  Google Scholar 

  3. Tardiff, J. C. (2010) Tropomyosin and dilated cardiomyopathy: revenge of the actinomyosin “gatekeeper”, J. Am. Coll. Cardiol., 55, 330-332, https://doi.org/10.1016/j.jacc.2009.11.018.

    Article  CAS  PubMed  Google Scholar 

  4. Manstein, D. J., and Mulvihill, D. P. (2016) Tropomyosin-mediated regulation of cytoplasmic myosins, Traffic, 17, 872-877, https://doi.org/10.1111/tra.12399.

    Article  CAS  PubMed  Google Scholar 

  5. Gunning, P. W., Hardeman, E. C., Lappalainen, P., and Mulvihill, D. P. (2015) Tropomyosin – master regulator of actin filament function in the cytoskeleton, J. Cell Sci., 128, 2965-2974, https://doi.org/10.1242/jcs.172502.

    Article  CAS  PubMed  Google Scholar 

  6. Khaitlina, S. Y. (2015) Tropomyosin as a regulator of actin dynamics, Int. Rev. Cell. Mol. Biol., 318, 255-291, https://doi.org/10.1016/bs.ircmb.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  7. Goldmann, W. H. (2000) Binding of tropomyosin-troponin to actin increases filament bending stiffness, Biochem. Biophys. Res. Commun., 276, 1225-1228, https://doi.org/10.1006/bbrc.2000.3608.

    Article  CAS  PubMed  Google Scholar 

  8. Nabiev, S. R., Ovsyannikov, D. A., Kopylova, G. V., Shchepkin, D. V., Matyushenko, A. M., Koubassova, N. A., Levitsky, D. I., Tsaturyan, A. K., and Bershitsky, S. Y. (2015) Stabilizing the central part of tropomyosin increases the bending stiffness of the thin filament, Biophys. J., 109, 373-379, https://doi.org/10.1016/j.bpj.2015.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weigt, C., Schoepper, B., and Wegner, A. (1990) Tropomyosin-troponin complex stabilizes the pointed ends of actin filaments against polymerization and depolymerization, FEBS Lett., 260, 266-268, https://doi.org/10.1016/0014-5793(90)80119-4.

    Article  CAS  PubMed  Google Scholar 

  10. Broschat, K. O. (1990) Tropomyosin prevents depolymerization of actin filaments from the pointed end, J. Biol. Chem., 265, 21323-21329, https://doi.org/10.1016/S0021-9258(17)45363-4.

    Article  CAS  PubMed  Google Scholar 

  11. Schevzov, G., Vrhovski, B., Bryce, N. S., Elmir, S., Qiu, M. R., O’Neill, G. M., Yang, N., Verrills, N. M., Kavallaris, M., and Gunning, P. W. (2005) Tissue-specific tropomyosin isoform composition, J. Histochem. Cytochem., 53, 557-570, https://doi.org/10.1369/jhc.4A6505.2005.

    Article  CAS  PubMed  Google Scholar 

  12. Weinberger, R. P., Henke, R. C., Tolhurst, O., Jeffrey, P. L., and Gunning, P. (1993) Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation, J. Cell Biol., 120, 205-215, https://doi.org/10.1083/jcb.120.1.205.

    Article  CAS  PubMed  Google Scholar 

  13. Pelham, R. J. Jr., Lin, J. J., and Wang, Y. L. (1996) A high molecular mass non-muscle tropomyosin isoform stimulates retrograde organelle transport, J. Cell Sci., 109 (Pt 5), 981-989, https://doi.org/10.1242/jcs.109.5.981.

    Article  PubMed  Google Scholar 

  14. Thoms, J. A., Loch, H. M., Bamburg, J. R., Gunning, P. W., and Weinberger, R. P. (2008) A tropomyosin 1 induced defect in cytokinesis can be rescued by elevated expression of cofilin, Cell Motil. Cytoskeleton, 65, 979-990, https://doi.org/10.1002/cm.20320.

    Article  CAS  PubMed  Google Scholar 

  15. Caldwell, B. J., Lucas, C., Kee, A. J., Gaus, K., Gunning, P. W., Hardeman, E. C., Yap, A. S., and Gomez, G. A. (2014) Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens, Cytoskeleton, 71, 663-676, https://doi.org/10.1002/cm.21202.

    Article  CAS  PubMed  Google Scholar 

  16. McMichael, B. K., and Lee, B. S. (2008) Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts, Exp. Cell Res., 314, 564-573, https://doi.org/10.1016/j.yexcr.2007.10.018.

    Article  CAS  PubMed  Google Scholar 

  17. Craig, R., and Lehman, W. (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments, J. Mol. Biol., 311, 1027-1036, https://doi.org/10.1006/jmbi.2001.4897.

    Article  CAS  PubMed  Google Scholar 

  18. Sweeney, H. L., and Hammers, D. W. (2018) Muscle contraction, Cold Spring Harb. Perspect. Biol., 10, a023200, https://doi.org/10.1101/cshperspect.a023200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fath, T. (2013) Tropomodulins and tropomyosins – organizers of cellular microcompartments, Biomol. Concepts, 4, 89-101, https://doi.org/10.1515/bmc-2012-0037.

    Article  CAS  PubMed  Google Scholar 

  20. Gray, K. T., Kostyukova, A. S., and Fath, T. (2017) Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function, Mol. Cell. Neurosci., 84, 48-57, https://doi.org/10.1016/j.mcn.2017.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hardeman, E. C., Bryce, N. S., and Gunning, P. W. (2020) Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms, Semin. Cell Dev. Biol., 102, 122-131, https://doi.org/10.1016/j.semcdb.2019.10.004.

    Article  CAS  PubMed  Google Scholar 

  22. Geeves, M. A., Hitchcock-DeGregori, S. E., and Gunning, P. W. (2015) A systematic nomenclature for mammalian tropomyosin isoforms, J. Muscle Res. Cell Motil., 36, 147-153, https://doi.org/10.1007/s10974-014-9389-6.

    Article  CAS  PubMed  Google Scholar 

  23. Tojkander, S., Gateva, G., Schevzov, G., Hotulainen, P., Naumanen, P., Martin, C., Gunning, P. W., and Lappalainen, P. (2011) A molecular pathway for myosin II recruitment to stress fibers, Curr. Biol., 21, 539-550, https://doi.org/10.1016/j.cub.2011.03.007.

    Article  CAS  PubMed  Google Scholar 

  24. Sanders, C., Burtnick, L. D., and Smillie, L. B. (1986) Native chicken gizzard tropomyosin is predominantly a beta gamma-heterodimer, J. Biol. Chem., 261, 12774-12778, https://doi.org/10.1016/S0021-9258(18)67160-1.

    Article  CAS  PubMed  Google Scholar 

  25. Wolfenson, H., Meacci, G., Liu, S., Stachowiak, M. R., Iskratsch, T., Ghassemi, S., Roca-Cusachs, P., O’Shaughnessy, B., Hone, J., and Sheetz, M. P. (2016) Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices, Nat. Cell. Biol., 18, 33-42, https://doi.org/10.1038/ncb3277.

    Article  CAS  PubMed  Google Scholar 

  26. Boyd, J., Risinger, J. I., Wiseman, R. W., Merrick, B. A., Selkirk, J. K., and Barrett, J. C. (1995) Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1, Proc. Natl. Acad. Sci. USA, 92, 11534-11538, https://doi.org/10.1073/pnas.92.25.11534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stehn, J. R., Schevzov, G., O’Neill, G. M., and Gunning, P. W. (2006) Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy, Curr. Cancer Drug Targets, 6, 245-256, https://doi.org/10.2174/156800906776842948.

    Article  CAS  PubMed  Google Scholar 

  28. Mahadev, K., Raval, G. S., Bharadwaj, S., Willingham, M. C., and Lange, E. M. (2002) Suppression of the transformed phenotype of breast cancer by tropomyosin-1, Exp. Cell Res., 279, 40-51, https://doi.org/10.1006/excr.2002.5583.

    Article  CAS  PubMed  Google Scholar 

  29. Nevzorov, I., Redwood, C., and Levitsky, D. I. (2008) Stability of two beta-tropomyosin isoforms: effects of mutation Arg91Gly, J. Muscle Res. Cell Motil., 29, 173-176, https://doi.org/10.1007/s10974-009-9171-3.

    Article  CAS  PubMed  Google Scholar 

  30. Gateva, G., Kremneva, E., Reindl, T., Kotila, T., and Kogan, K. (2017) Tropomyosin isoforms specify functionally distinct actin filament populations in vitro, Curr. Biol., 27, 705-713, https://doi.org/10.1016/j.cub.2017.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coulton, A., Lehrer, S. S., and Geeves, M. A. (2006) Functional homodimers and heterodimers of recombinant smooth muscle tropomyosin, Biochemistry, 45, 12853-12858, https://doi.org/10.1021/bi0613224.

    Article  CAS  PubMed  Google Scholar 

  32. Janco, M., Bonello, T. T., Byun, A., Coster, A. C. F., Lebhar, H., Dedova, I., Gunning, P. W., and Böcking, T. (2016) The impact of tropomyosins on actin filament assembly is isoform specific, Bioarchitecture, 6, 61-75, https://doi.org/10.1080/19490992.2016.1201619.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jeong, S., Lim, S., Schevzov, G., Gunning, P. W., and Helfman, D. M. (2017) Loss of Tpm4.1 leads to disruption of cell-cell adhesions and invasive behavior in breast epithelial cells via increased Rac1 signaling, Oncotarget, 8, 33544-33559, https://doi.org/10.18632/oncotarget.16825.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F.-C. (1994) Functional α-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group, J. Biol. Chem., 269, 10461-10466, https://doi.org/10.1016/S0021-9258(17)34082-6.

    Article  CAS  PubMed  Google Scholar 

  35. Matyushenko, A. M., Artemova, N. V., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., Tsaturyan, A. K., Sluchanko, N. N., and Levitsky, D. I. (2014) Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule, FEBS J., 281, 2004-2016, https://doi.org/10.1111/febs.12756.

    Article  CAS  PubMed  Google Scholar 

  36. Spudich, J. A., and Watt, S. (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin, J. Biol. Chem., 246, 4866-4871, https://doi.org/10.1016/S0021-9258(18)62016-2.

    Article  CAS  PubMed  Google Scholar 

  37. Matyushenko, A. M., Kleymenov, S. Y., Susorov, D. S., and Levitsky, D. I. (2018) Thermal unfolding of homodimers and heterodimers of different skeletal-muscle isoforms of tropomyosin, Biophys. Chem., 243, 1-7, https://doi.org/10.1016/j.bpc.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  38. Nefedova, V. V., Marchenko, M. A., Kleymenov, S. Y., Datskevich, P. N., Levitsky, D. I., and Matyushenko, A. M. (2019) Thermal unfolding of various human non-muscle isoforms of tropomyosin, Biochem. Biophys. Res. Commun., 514, 613-617, https://doi.org/10.1016/j.bbrc.2019.05.008.

    Article  CAS  PubMed  Google Scholar 

  39. Marchenko, M., Nefedova, V., Artemova, N., Kleymenov, S., Levitsky, D., and Matyushenko, A. (2021) Structural and functional peculiarities of cytoplasmic tropomyosin isoforms, the products of TPM1 and TPM4 genes, Int. J. Mol. Sci., 22, 5141, https://doi.org/10.3390/ijms22105141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marchenko, M. A., Nefedova, V. V., Yampolskaya, D. S., Borzova, V. A., Kleymenov, S. Y., Nabiev, S. R., Nikitina, L. V., Matyushenko, A. M., and Levitsky, D. I. (2021) Comparative structural and functional studies of low molecular weight tropomyosin isoforms, the TPM3 gene products, Arch. Biochem. Biophys., 710, 108999, https://doi.org/10.1016/j.abb.2021.108999.

    Article  CAS  PubMed  Google Scholar 

  41. Matyushenko, A. M., Shchepkin, D. V., Kopylova, G. V., Bershitsky, S. Y., and Levitsky, D. I. (2020) Unique functional properties of slow skeletal muscle tropomyosin, Biochimie, 174, 1-8, https://doi.org/10.1016/j.biochi.2020.03.013.

    Article  CAS  PubMed  Google Scholar 

  42. Lees-Miller, J. P., and Helfman, D. M. (1991) The molecular basis for tropomyosin isoform diversity, Bioessays, 13, 429-437, https://doi.org/10.1002/bies.950130902.

    Article  CAS  PubMed  Google Scholar 

  43. Matyushenko, A. M., Artemova, N. V., Sluchanko, N. N., and Levitsky, D. I. (2015) Effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin on the domain structure of its molecule, Biophys. Chem., 196, 77-85, https://doi.org/10.1016/j.bpc.2014.10.001.

    Article  CAS  PubMed  Google Scholar 

  44. Arndt, K. M., Pelletier, J. N., Müller, K. M., Plückthun, A., and Alber, T. (2002) Comparison of in vivo selection and rational design of heterodimeric coiled coils, Structure, 10, 1235-1248, https://doi.org/10.1016/s0969-2126(02)00838-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-74-10106.

Author information

Authors and Affiliations

Authors

Contributions

A.M.M. developed the study concept and provided project management; A.S.L., D.S.Y., and V.V.N. obtained Tpm preparations and performed experiments; S.Y.K. performed DSC measurements; A.M.M. and D.I.L. write the original draft. All authors took part in the discussion of the results and editing of the final version of the article.

Corresponding author

Correspondence to Alexander M. Matyushenko.

Ethics declarations

The authors declare no conflict of interest. This article does not contain a description of studies with the involvement of humans or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logvinov, A.S., Nefedova, V.V., Yampolskaya, D.S. et al. Structural and Functional Properties of Tropomyosin Isoforms Tpm4.1 and Tpm2.1. Biochemistry Moscow 88, 801–809 (2023). https://doi.org/10.1134/S0006297923060081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923060081

Keywords

Navigation