Skip to main content
Log in

A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

So far, it has been a challenge for existing interatomic potentials to accurately describe a wide range of physical properties and maintain reasonable efficiency. In this work, we develop an interatomic potential for simulating radiation damage in body-centered cubic tungsten by employing deep potential, a neural network-based deep learning model for representing the potential energy surface. The resulting potential predicts a variety of physical properties consistent with first-principles calculations, including phonon spectrum, thermal expansion, generalized stacking fault energies, energetics of free surfaces, point defects, vacancy clusters, and prismatic dislocation loops. Specifically, we investigated the elasticity-related properties of prismatic dislocation loops, i.e., their dipole tensors, relaxation volumes, and elastic interaction energies. This potential is found to predict the maximal elastic interaction energy between two 1/2 \(\left\langle {1 \, 1 \, 1} \right\rangle\) loops better than previous potentials, with a relative error of only 7.6%. The predicted threshold displacement energies are in reasonable agreement with experimental results, with an average of 128 eV. The efficiency of the present potential is also comparable to the tabulated gaussian approximation potentials and modified embedded atom method potentials, meanwhile, can be further accelerated by graphical processing units. Extensive benchmark tests indicate that this potential has a relatively good balance between accuracy, transferability, and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Gitee repository at https://gitee.com/DingChangjie/tungsten-dp.

References

  1. Linsmeier C, Rieth M, Aktaa J, Chikada T, Hoffmann A, Hoffmann J, Houben A, Kurishita H, Jin X, Li M, Litnovsky A, Matsuo S, von Müller A, Nikolic V, Palacios T, Pippan R, Qu D, Reiser J, Riesch J, Shikama T, Stieglitz R, Weber T, Wurster S, You JH, Zhou Z. Development of advanced high heat flux and plasma-facing materials. Nucl Fusion. 2017;57(9):092007. https://doi.org/10.1088/1741-4326/aa6f71.

    Article  CAS  Google Scholar 

  2. Kaufmann M, Neu R. Tungsten as first wall material in fusion devices. In: Proceedings of the 24th symposium on fusion technology. Warsaw, Poland; 2006. 521.

  3. Causey R, Wilson K, Venhaus T, Wampler WR. Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons. J Nucl Mater. 1999;266–269:467. https://doi.org/10.1016/S0022-3115(98)00538-8.

    Article  Google Scholar 

  4. Fikar J, Schäublin R, Mason DR, Nguyen-Manh D. Nano-sized prismatic vacancy dislocation loops and vacancy clusters in tungsten. Nucl Mater Energy. 2018;16:60. https://doi.org/10.1016/j.nme.2018.06.011.

    Article  Google Scholar 

  5. Hou J, You YW, Kong XS, Song J, Liu CS. Accurate prediction of vacancy cluster structures and energetics in bcc transition metals. Acta Mater. 2021;211:116860. https://doi.org/10.1016/j.actamat.2021.116860.

    Article  CAS  Google Scholar 

  6. Ding Y, Wu X, Zhan J, Chen Z, Mao S, Ye M. Simulation study of effects of grain boundary and helium bubble on lattice thermal resistance of tungsten. Fusion Eng Des. 2021;168:112682. https://doi.org/10.1016/j.fusengdes.2021.112682.

    Article  CAS  Google Scholar 

  7. Mason DR, Reza A, Granberg F, Hofmann F. Estimate for thermal diffusivity in highly irradiated tungsten using molecular dynamics simulation. Phys Rev Mater. 2021;5(12):125407. https://doi.org/10.1103/PhysRevMaterials.5.125407.

    Article  CAS  Google Scholar 

  8. Derlet PM, Nguyen-Manh D, Dudarev SL. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B. 2007;76(5):054107. https://doi.org/10.1103/PhysRevB.76.054107.

    Article  CAS  Google Scholar 

  9. Fang J, Liu L, Gao N, Hu W, Deng H. Molecular dynamics simulation of the behavior of typical radiation defects under stress gradient field in tungsten. J Appl Phys. 2021;130(12):125103. https://doi.org/10.1063/5.0059748.

    Article  CAS  Google Scholar 

  10. Chen Y, Fang J, Liu L, Hu W, Jiang C, Gao N, Zhou HB, Lu GH, Gao F, Deng H. The interactions between rhenium and interstitial-type defects in bulk tungsten: a combined study by molecular dynamics and molecular statics simulations. J Nucl Mater. 2019;522:200. https://doi.org/10.1016/j.jnucmat.2019.05.003.

    Article  CAS  Google Scholar 

  11. Ma PW, Mason DR, Dudarev SL. Multiscale analysis of dislocation loops and voids in tungsten. Phys Rev Mater. 2020;4(10):103609. https://doi.org/10.1103/PhysRevMaterials.4.103609.

    Article  CAS  Google Scholar 

  12. Granberg F, Byggmästar J, Nordlund K. Molecular dynamics simulations of high-dose damage production and defect evolution in tungsten. J Nucl Mater. 2021;556:153158. https://doi.org/10.1016/j.jnucmat.2021.153158.

    Article  CAS  Google Scholar 

  13. Mason DR, Granberg F, Boleininger M, Schwarz-Selinger T, Nordlund K, Dudarev SL. Parameter-free quantitative simulation of high-dose microstructure and hydrogen retention in ion-irradiated tungsten. Phys Rev Mater. 2021;5(9):095403. https://doi.org/10.1103/PhysRevMaterials.5.095403.

    Article  CAS  Google Scholar 

  14. Wang Y, Li X, Li X, Zhang Y, Zhang Y, Xu Y, Lei Y, Liu CS, Wu X. Prediction of vacancy formation energies at tungsten grain boundaries from local structure via machine learning method. J Nucl Mater. 2022;559:153412. https://doi.org/10.1016/j.jnucmat.2021.153412.

    Article  CAS  Google Scholar 

  15. Li X, Wang Y, Zhang Y, Xu Y, Li XY, Wang X, Fang QF, Wu X, Liu CS. Towards the dependence of radiation damage on the grain boundary character and grain size in tungsten: a combined study of molecular statics and rate theory. J Nucl Mater. 2022;563:153637. https://doi.org/10.1016/j.jnucmat.2022.153637.

    Article  CAS  Google Scholar 

  16. Wang YR, Boercker DB. Effective interatomic potential for body-centered-cubic metals. J Appl Phys. 1998;78(1):122. https://doi.org/10.1063/1.360661.

    Article  Google Scholar 

  17. Mason DR, Nguyen-Manh D, Becquart CS. An empirical potential for simulating vacancy clusters in tungsten. J Phys Condens Mat. 2017;29(50):505501. https://doi.org/10.1088/1361-648X/aa9776.

    Article  CAS  Google Scholar 

  18. Sand AE, Dequeker J, Becquart CS, Domain C, Nordlund K. Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten. J Nucl Mater. 2016;470:119. https://doi.org/10.1016/j.jnucmat.2015.12.012.

    Article  CAS  Google Scholar 

  19. Setyawan W, Selby AP, Juslin N, Stoller RE, Wirth BD, Kurtz RJ. Cascade morphology transition in bcc metals. J Phys Condens Mat. 2015;27(22):225402. https://doi.org/10.1088/0953-8984/27/22/225402.

    Article  CAS  Google Scholar 

  20. Becquart CS, de Backer A, Olsson P, Domain C. Modelling the primary damage in Fe and W: influence of the short range interactions on the cascade properties: part 1—energy transfer. J Nucl Mater. 2021;547:152816. https://doi.org/10.1016/j.jnucmat.2021.152816.

    Article  CAS  Google Scholar 

  21. Marinica MC, Ventelon L, Gilbert MR, Proville L, Dudarev SL, Marian J, Bencteux G, Willaime F. Interatomic potentials for modelling radiation defects and dislocations in tungsten. J Phys Condens Mat. 2013;25(39):395502. https://doi.org/10.1088/0953-8984/25/39/395502.

    Article  CAS  Google Scholar 

  22. Fellman A, Sand AE, Byggmästar J, Nordlund K. Radiation damage in tungsten from cascade overlap with voids and vacancy clusters. J Phys Condens Mat. 2019;31(40):405402. https://doi.org/10.1088/1361-648X/ab2ea4.

    Article  CAS  Google Scholar 

  23. Varvenne C, Bruneval F, Marinica MC, Clouet E. Point defect modeling in materials: coupling ab initio and elasticity approaches. Phys Rev B. 2013;88(13):134102. https://doi.org/10.1103/PhysRevB.88.134102.

    Article  CAS  Google Scholar 

  24. Varvenne C, Clouet E. Elastic dipoles of point defects from atomistic simulations. Phys Rev B. 2017;96(12):224103. https://doi.org/10.1103/PhysRevB.96.224103.

    Article  Google Scholar 

  25. Dudarev SL, Ma PW. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals. Phys Rev Mater. 2018;2(3):033602. https://doi.org/10.1103/PhysRevMaterials.2.033602.

    Article  CAS  Google Scholar 

  26. Klimenkov M, Jäntsch U, Rieth M, Möslang A. Correlation of microstructural and mechanical properties of neutron irradiated EUROFER97 steel. J Nucl Mater. 2020;538:152231. https://doi.org/10.1016/j.jnucmat.2020.152231.

    Article  CAS  Google Scholar 

  27. Reali L, Boleininger M, Gilbert MR, Dudarev SL. Macroscopic elastic stress and strain produced by irradiation. Nucl Fusion. 2022;62(1):016002. https://doi.org/10.1088/1741-4326/ac35d4.

    Article  Google Scholar 

  28. Dudarev SL, Mason DR, Tarleton E, Ma PW, Sand AE. A multi-scale model for stresses, strains and swelling of reactor components under irradiation. Nucl Fusion. 2018;58(12):126002. https://doi.org/10.1088/1741-4326/aadb48.

    Article  CAS  Google Scholar 

  29. Baskes MI. Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Phys Rev Lett. 1987;59(23):2666. https://doi.org/10.1103/PhysRevLett.59.2666.

    Article  CAS  PubMed  Google Scholar 

  30. Lenosky TJ, Sadigh B, Alonso E, Bulatov VV, Diaz de la Rubia T, Kim J, Voter AF, Kress JD. Highly optimized empirical potential model of silicon. Modelling Simul Mater Sci Eng. 2000;8(6):825. https://doi.org/10.1088/0965-0393/8/6/305.

    Article  Google Scholar 

  31. Byggmästar J, Hamedani A, Nordlund K, Djurabekova F. Machine-learning interatomic potential for radiation damage and defects in tungsten. Phys Rev B. 2019;100(14):144105. https://doi.org/10.1103/PhysRevB.100.144105.

    Article  Google Scholar 

  32. Goryaeva AM, Dérès J, Lapointe C, Grigorev P, Swinburne TD, Kermode JR, Ventelon L, Baima J, Marinica MC. Efficient and transferable machine learning potentials for the simulation of crystal defects in bcc Fe and W. Phys Rev Mater. 2021;5(10):103803. https://doi.org/10.1103/PhysRevMaterials.5.103803.

    Article  CAS  Google Scholar 

  33. Wood MA, Thompson AP. Quantum-accurate molecular dynamics potential for tungsten. SAND2017-3265R 652075. 2017; https://doi.org/10.2172/1365473.

  34. Szlachta WJ, Bartók AP, Csányi G. Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys Rev B. 2014;90(10):104108. https://doi.org/10.1103/PhysRevB.90.104108.

    Article  CAS  Google Scholar 

  35. Sikorski EL, Cusentino MA, McCarthy MJ, Tranchida J, Wood MA, Thompson AP. Machine learned interatomic potential for dispersion strengthened plasma facing components. J Chem Phys. 2023;158(11):114101. https://doi.org/10.1063/5.0135269.

    Article  CAS  PubMed  Google Scholar 

  36. Byggmästar J, Nordlund K, Djurabekova F. Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: defects and segregation. Phys Rev B. 2021;104(10):104101. https://doi.org/10.1103/PhysRevB.104.104101.

    Article  Google Scholar 

  37. Byggmästar J, Nordlund K, Djurabekova F. Simple machine-learned interatomic potentials for complex alloys. Phys Rev Mater. 2022;6(8):083801. https://doi.org/10.1103/PhysRevMaterials.6.083801.

    Article  Google Scholar 

  38. Zhang L, Han J, Wang H, Car R, Weinan E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett. 2018;120(14):143001. https://doi.org/10.1103/PhysRevLett.120.143001.

    Article  CAS  PubMed  Google Scholar 

  39. Han J, Zhang L, Car R, Weinan E. Deep potential: a general representation of a many-body potential energy surface. Commun Comput Phys. 2018;23(3):629. https://doi.org/10.4208/cicp.OA-2017-0213.

    Article  Google Scholar 

  40. Zhang L, Han J, Wang H, Saidi WA, Car R, Weinan E. End-to-end symmetry preserving interatomic potential energy model for finite and extended systems. In: Proceedings of the 32nd international conference on neural information processing systems. Montréal, Canada; 2018. 4441.

  41. Wen T, Zhang L, Wang H, Weinan E, Srolovitz DJ. Deep potentials for materials science. Mater Futures. 2022;1(2):022601. https://doi.org/10.1088/2752-5724/ac681d.

    Article  Google Scholar 

  42. Wang X, Wang Y, Zhang L, Dai F, Wang H. A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment. Nucl Fusion. 2022;62(12):126013. https://doi.org/10.1088/1741-4326/ac888b.

    Article  CAS  Google Scholar 

  43. Wang H, Guo X, Zhang L, Wang H, Xue J. Deep learning inter-atomic potential model for accurate irradiation damage simulations. Appl Phys Lett. 2019;114(24):244101. https://doi.org/10.1063/1.5098061.

    Article  CAS  Google Scholar 

  44. Lu D, Jiang W, Chen Y, Zhang L, Jia W, Wang H, Chen M. DP compress: a model compression scheme for generating efficient deep potential models. J Chem Theory Comput. 2022;18(9):5559. https://doi.org/10.1021/acs.jctc.2c00102.

    Article  CAS  PubMed  Google Scholar 

  45. Park H, Fellinger MR, Lenosky TJ, Tipton WW, Trinkle DR, Rudin SP, Woodward C, Wilkins JW, Hennig RG. Ab initio based empirical potential used to study the mechanical properties of molybdenum. Phys Rev B. 2012;85(21):214121. https://doi.org/10.1103/PhysRevB.85.214121.

    Article  CAS  Google Scholar 

  46. Zhang Y, Wang H, Chen W, Zeng J, Zhang L, Wang H, Weinan E. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput Phys Commun. 2020;253:107206. https://doi.org/10.1016/j.cpc.2020.107206.

    Article  CAS  Google Scholar 

  47. de Oca Zapiain DM, Wood MA, Lubbers N, Pereyra CZ, Thompson AP, Perez D. Training data selection for accuracy and transferability of interatomic potentials. NPJ Comput Mater. 2022;8(1):189. https://doi.org/10.1038/s41524-022-00872-x.

    Article  Google Scholar 

  48. Wang H, Zhang L, Han J, Weinan E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun. 2018;228:178. https://doi.org/10.1016/j.cpc.2018.03.016.

    Article  CAS  Google Scholar 

  49. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, Veld PJI, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens MJ, Tranchida J, Trott C, Plimpton SJ. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. https://doi.org/10.1016/j.cpc.2021.108171.

    Article  CAS  Google Scholar 

  50. Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the knowledgebase of interatomic models. J Miner Met Mater Soc. 2011;63(7):17. https://doi.org/10.1007/s11837-011-0102-6.

    Article  Google Scholar 

  51. Nordlund K, Runeberg N, Sundholm D. Repulsive interatomic potentials calculated using Hartree-Fock and density-functional theory methods. Nucl Instrum Methods Phys Res Sect B. 1997;132(1):45. https://doi.org/10.1016/S0168-583X(97)00447-3.

    Article  CAS  Google Scholar 

  52. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;78(7):3865. https://doi.org/10.1103/PhysRevLett.78.1396.

    Article  Google Scholar 

  54. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  55. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1977;13(12):5188. https://doi.org/10.1103/PhysRevB.13.5188.

    Article  Google Scholar 

  56. Becquart CS, Domain C, Sarkar U, Debacker A, Hou M. Microstructural evolution of irradiated tungsten: ab initio parameterisation of an OKMC model. J Nucl Mater. 2010;403(1–3):75. https://doi.org/10.1016/j.jnucmat.2010.06.003.

    Article  CAS  Google Scholar 

  57. Dudarev SL, Sutton AP. Elastic interactions between nano-scale defects in irradiated materials. Acta Mater. 2017;125:425. https://doi.org/10.1016/j.actamat.2016.11.060.

    Article  CAS  Google Scholar 

  58. Fu T, Peng X, Zhao Y, Sun R, Yin D, Hu N, Wang Z. Molecular dynamics simulation of the slip systems in VN. RSC Adv. 2015;5:77831. https://doi.org/10.1039/c5ra15878h.

    Article  CAS  Google Scholar 

  59. Qi X, Cai N, Wang S, Li B. Thermoelastic properties of tungsten at simultaneous high pressure and temperature. J Appl Phys. 2020;128(10):105105. https://doi.org/10.1063/5.0022536.

    Article  CAS  Google Scholar 

  60. Lide DR. CRC handbook of chemistry and physics. 80th ed. Boca Raton: CRC Press; 1999.

    Google Scholar 

  61. Renault PO, Badawi KF, Bimbault L, Goudeau P, Elkaïm E, Lauriat JP. Poisson’s ratio measurement in tungsten thin films combining an x-ray diffractometer with in situ tensile tester. Appl Phys Lett. 1998;73(14):1952. https://doi.org/10.1063/1.122332.

    Article  CAS  Google Scholar 

  62. Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater. 2015;108:1. https://doi.org/10.1016/j.scriptamat.2015.07.021.

    Article  CAS  Google Scholar 

  63. White GK, Minges ML. Thermophysical properties of some key solids: an update. Int J Thermophys. 1994;18(5):1269. https://doi.org/10.1007/BF01458841.

    Article  Google Scholar 

  64. Henkelman G, Uberuaga BP, Jónsson H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113(22):9901. https://doi.org/10.1063/1.1329672.

    Article  CAS  Google Scholar 

  65. Ma PW, Dudarev SL. Universality of point defect structure in body-centered cubic metals. Phys Rev Mater. 2019;3(1):013605. https://doi.org/10.1103/PhysRevMaterials.3.013605.

    Article  CAS  Google Scholar 

  66. Ma PW, Dudarev SL. Effect of stress on vacancy formation and migration in body-centered-cubic metals. Phys Rev Mater. 2019;3(6):063601. https://doi.org/10.1103/PhysRevMaterials.3.063601.

    Article  CAS  Google Scholar 

  67. Ma PW, Dudarev SL. Symmetry-broken self-interstitial defects in chromium, molybdenum, and tungsten. Phys Rev Mater. 2019;3(4):043606. https://doi.org/10.1103/PhysRevMaterials.3.043606.

    Article  CAS  Google Scholar 

  68. Post K, Pleiter F, van der Kolk GJ, van Veen A, Caspers LM, de Hosson JTM. Formation of small vacancy clusters in tungsten around silver and indium impurities studied by PAC and THDS. Hyperfine Interact. 1983;15(1–4):421. https://doi.org/10.1007/BF02159782.

    Article  CAS  Google Scholar 

  69. Heikinheimo J, Mizohata K, Räisänen J, Ahlgren T, Jalkanen P, Lahtinen A, Catarino N, Alves E, Tuomisto F. Direct observation of mono-vacancy and self-interstitial recovery in tungsten. APL Mater. 2019;7(2):021103. https://doi.org/10.1063/1.5082150.

    Article  CAS  Google Scholar 

  70. Was GS. Fundamentals of radiation damage materials science. 2nd ed. New York: Springer; 2017.

    Book  Google Scholar 

  71. Li Y, Wang L, Ran G, Yuan Y, Wu L, Liu X, Qiu X, Sun Z, Ding Y, Han Q, Wu X, Deng H, Huang X. In-situ TEM investigation of 30 keV he+ irradiated tungsten: effects of temperature, fluence, and sample thickness on dislocation loop evolution. Acta Mater. 2021;206:116618. https://doi.org/10.1016/j.actamat.2020.116618.

    Article  CAS  Google Scholar 

  72. Ma PW, Dudarev SL. CALANIE: anisotropic elastic correction to the total energy, to mitigate the effect of periodic boundary conditions. Comput Phys Commun. 2020;252:107130. https://doi.org/10.1016/j.cpc.2019.107130.

    Article  CAS  Google Scholar 

  73. Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mat Sci Eng. 2010;18(8):085001. https://doi.org/10.1088/0965-0393/18/8/085001.

    Article  CAS  Google Scholar 

  74. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mat Sci Eng. 2009;18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012.

    Article  Google Scholar 

  75. Ma PW, Dudarev SL. Elastic dipole tensor of a defect at a finite temperature: definition and properties. Phys Rev Mater. 2021;5(7):073609. https://doi.org/10.1103/PhysRevMaterials.5.073609.

    Article  CAS  Google Scholar 

  76. Mason DR, Nguyen-Manh D, Marinica MC, Alexander R, Sand AE, Dudarev SL. Relaxation volumes of microscopic and mesoscopic irradiation-induced defects in tungsten. J Appl Phys. 2019;126(7):075112. https://doi.org/10.1063/1.5094852.

    Article  CAS  Google Scholar 

  77. Banisalman MJ, Park S, Oda T. Evaluation of the threshold displacement energy in tungsten by molecular dynamics calculations. J Nucl Mater. 2017;495:277. https://doi.org/10.1016/j.jnucmat.2017.08.019.

    Article  CAS  Google Scholar 

  78. Maury F, Biget M, Vajda P, Lucasson A, Lucasson P. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold. Radiat Eff. 2006;38(1–2):53. https://doi.org/10.1080/00337577808233209.

    Article  Google Scholar 

  79. Juslin N, Wirth BD. Interatomic potentials for simulation of He bubble formation in W. J Nucl Mater. 2013;432(1–3):61. https://doi.org/10.1016/j.jnucmat.2012.07.023.

    Article  CAS  Google Scholar 

  80. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014;185(2):604. https://doi.org/10.1016/j.cpc.2013.09.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFE03110000), the National Natural Science Foundation of China (Nos. 52171084 and 12192282), and the Foundation of President of Hefei Institutes of Physical Science, Chinese Academy of Sciences (Nos. YZJJQY202203 and BJPY2021A05). Computations were performed on Hefei Advanced Computing Center and the Center for Computational Science, Hefei Institutes of Physical Science. We sincerely thank Dr. Hao Wang at Peking University for helpful suggestions on the implementation of tabulation, and Prof. Takuji Oda at Seoul National University for the kind help of obtaining the interatomic potentials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Yan Li or Xue-Bang Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 543 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, CJ., Lei, YW., Wang, XY. et al. A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten. Tungsten 6, 304–322 (2024). https://doi.org/10.1007/s42864-023-00230-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00230-4

Keywords

Navigation