Skip to main content
Log in

Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The treatment of patients infected with the hepatitis C virus (HCV) has been revolutionised by the development of direct-acting antiviral agents (DAAs) that target specific HCV proteins involved in viral replication. The first DAAs were associated with clinical problems such as adverse drug reactions and pharmacokinetic drug–drug interactions (DDIs). Current FDA/EMA-approved treatments are combinations of DAAs that simultaneously target the HCV N5A-protein, the HCV N5B-polymerase and the HCV NS3/4A-protease. Adverse events and DDIs are less likely with these DAA combinations but several DDIs of potential clinical significance remain. Much of the available information on the interaction of DAAs with CYP drug-metabolising enzymes and influx and efflux transporters is contained in regulatory summaries and is focused on DDIs of likely clinical importance. Important DDIs perpetrated by current DAAs include increases in the pharmacokinetic exposure to statins and dabigatran. Some mechanistic information can be deduced. Although the free concentrations of DAAs in serum are very low, a number of these DDIs are likely mediated by the inhibition of systemic influx transporters, especially OATP1B1/1B3. Other DDIs may arise by DAA-mediated inhibition of intestinal efflux transporters, which increases the systemic concentrations of some coadministered drugs. Conversely, DAAs are victims of DDIs mediated by cyclosporin, ketoconazole, omeprazole and HIV antiretroviral drug combinations, especially when boosted by ritonavir and, to a lesser extent, cobicistat. In addition, concurrent administration of inducers, such as rifampicin, carbamazepine and efavirenz, decreases exposure to some DAAs. Drug-drug interactions that increase the accumulation of HCV N3/4A-protease inhibitors like grazoprevir may exacerbate hepatic injury in HCV patients.

Plain Language Summary

Direct-acting antiviral (DAA) drugs have revolutionised the treatment of patients with hepatitis C. Compared to the earlier agents, currently-approved DAA combinations have fewer adverse effects and are less likely to be associated with pharmacokinetic drug-drug interactions (DDIs). However, adverse events and DDIs still occur when DAAs are coadministered with certain drugs. In most cases DAAs likely perpetrate DDIs by inhibiting drug transporters. However, access to more detailed information on HCV DAAs as substrates and inhibitors of drug-metabolising enzymes and transporters, and the incidence of DDIs in target populations, would enhance the understanding of the significance of the likelihood of DDIs with DAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petruzziello A, Marigliano S, Loquercio G, Cozzolino A, Cacciapuoti C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol. 2016;22:7824–40. https://doi.org/10.3748/wjg.v22.i34.7824.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lanini S, Easterbrook PJ, Zumla A, Ippolito G. Hepatitis C: global epidemiology and strategies for control. Clin Microbiol Infect. 2016;22:833–8. https://doi.org/10.1016/j.cmi.2016.07.035.

    Article  CAS  PubMed  Google Scholar 

  3. Cacoub P, Sadoun D. Extrahepatic manifestations of chronic HCV infection. N Engl J Med. 2021;384:1038–52. https://doi.org/10.1056/NEJMra2033539.

    Article  CAS  PubMed  Google Scholar 

  4. Zappulo E, Scotto R, Buonomo AR, Maraolo AE, Pinchera B, Gentile I. Efficacy and safety of a fixed dose combination tablet of asunaprevir + beclabuvir + daclatasvir for the treatment of Hepatitis C. Exp Opin Pharmacother. 2020;21:261–73. https://doi.org/10.1080/14656566.2019.1697674.

    Article  CAS  Google Scholar 

  5. Dubuisson J. Hepatitis C virus proteins. World J Gastroenterol. 2007;13:2406–15. https://doi.org/10.3748/wjg.v13.i17.2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gouklani H, Bull RA, Beyer C, Coulibaly F, Gowans EJ, Drummer HE, Netter HJ, White PA, Haqshenas G. Hepatitis C virus nonstructural protein 5B is involved in virus morphogenesis. J Virol. 2012;86:5080–8. https://doi.org/10.1128/JVI.07089-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simmonds P, Bukh J, Combet C, Deléage G, Enomoto N, Feinstone S, Halfon P, Inchauspé G, Kuiken C, Maertens G, Mizokami M, Murphy DG, Okamoto H, Pawlotsky JM, Penin F, Sablon E, Shin-I T, Stuyver LJ, Thiel HJ, Viazov S, Weiner AJ, Widell A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology. 2005;42:962–73. https://doi.org/10.1002/hep.20819.

    Article  CAS  PubMed  Google Scholar 

  8. Simmonds P. Genetic diversity and evolution of hepatitis C virus–15 years on. J Gen Virol. 2004;85:3173–88. https://doi.org/10.1099/vir.0.80401-0.

    Article  CAS  PubMed  Google Scholar 

  9. Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P, Nevens F, Müllhaupt B, Pockros P, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Picchio G, Beumont M. Telaprevir for retreatment of HCV infection. N Engl J Med. 2011;364:2417–28. https://doi.org/10.1056/NEJMoa1013086.

    Article  CAS  PubMed  Google Scholar 

  10. Ciesek S, von Hahn T, Manns MP. Second-wave protease inhibitors: choosing an heir. Clin Liver Dis. 2011;15:597–609. https://doi.org/10.1016/j.cld.2011.05.014.

    Article  PubMed  Google Scholar 

  11. Nakanishi T, Tamai I. Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J Pharm Sci. 2011;100:3731–50. https://doi.org/10.1002/jps.22576.

    Article  CAS  PubMed  Google Scholar 

  12. https://www.proteinatlas.org (Accessed 18 April 2023).

  13. Robertson EE, Rankin GO. Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacol Ther. 2006;109:399–412. https://doi.org/10.1016/j.pharmthera.2005.07.005.

    Article  CAS  PubMed  Google Scholar 

  14. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  15. Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28:38–42. https://doi.org/10.1021/tx500444e.

    Article  CAS  PubMed  Google Scholar 

  16. Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet. 2008;23:87–94. https://doi.org/10.2133/dmpk.23.87.

    Article  CAS  PubMed  Google Scholar 

  17. Szakács G, Váradi A, Ozvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today. 2008;13:379–93. https://doi.org/10.1016/j.drudis.2007.12.010.

    Article  CAS  PubMed  Google Scholar 

  18. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29. https://doi.org/10.1016/s0169-409x(02)00169-2.

    Article  CAS  PubMed  Google Scholar 

  19. Vander Borght S, Libbrecht L, Katoonizadeh A, van Pelt J, Cassiman D, Nevens F, Van Lommel A, Peterson BE, Fevery J, Jansen PL, Roskams TA. Breast cancer resistance protein (BCRP/ABCG2) is expressed by progenitor cells/reactive ductules and hepatocytes and its expression pattern is influenced by disease etiology and species type: possible functional consequences. J Histochem Cytochem. 2006;54:1051–9. https://doi.org/10.1369/jhc.5A6912.2006.

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez-Antona C, Bort R, Jover R, Tindberg N, Ingelman-Sundberg M, Gómez-Lechón MJ, Castell JV. Transcriptional regulation of human CYP3A4 basal expression by CCAAT enhancer-binding protein-α and hepatocyte nuclear factor-3β. Mol Pharmacol. 2003;63:1180–9. https://doi.org/10.1124/mol.63.5.1180.

    Article  PubMed  Google Scholar 

  21. Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys. 1999;369:11–23. https://doi.org/10.1006/abbi.1999.1351.

    Article  CAS  PubMed  Google Scholar 

  22. Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane X receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol. 2002;62:638–46. https://doi.org/10.1124/mol.62.3.638.

    Article  CAS  PubMed  Google Scholar 

  23. Roberts EA, Johnson KC, Harper PA, Okey AB. Characterization of the Ah receptor mediating aryl hydrocarbon hydroxylase induction in the human liver cell line Hep G2. Arch Biochem Biophys. 1990;276:442–50. https://doi.org/10.1016/0003-9861(90)90743-i.

    Article  CAS  PubMed  Google Scholar 

  24. Kipp H, Arias IM. Trafficking of canalicular ABC transporters in hepatocytes. Annu Rev Physiol. 2002;64:595–608. https://doi.org/10.1146/annurev.physiol.64.081501.155793.

    Article  CAS  PubMed  Google Scholar 

  25. Murray M, Zhou F. Trafficking and other regulatory mechanisms for Organic anion transporting polypeptides (OATPs) and Organic Anion transporters (OATs) that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol. 2017;174:1908–24. https://doi.org/10.1111/bph.13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drozdzik M, Lapczuk-Romanska J, Wenzel C, Skalski L, Szelag-Pieniek S, Post M, Parus A, Syczewska M, Kurzawski M, Oswald S. Protein abundance of drug metabolizing enzymes in human hepatitis C livers. Int J Mol Sci. 2023;24:4543. https://doi.org/10.3390/ijms24054543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–9. https://doi.org/10.1002/bjs.1800600817.

    Article  CAS  PubMed  Google Scholar 

  28. Guengerich FP, Turvy CG. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J Pharmacol Exp Ther. 1991;256:1189–94.

    CAS  PubMed  Google Scholar 

  29. George J, Murray M, Byth K, Farrell GC. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology. 1995;21:120–8. https://doi.org/10.1016/0270-9139(95)90418-2.

    Article  CAS  PubMed  Google Scholar 

  30. Hardwick RN, Fisher CD, Canet MJ, Scheffer GL, Cherrington NL. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2011;39:2395–402. https://doi.org/10.1124/dmd.111.041012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Merrell MD, Cherrington NJ. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab Rev. 2011;43:317–34. https://doi.org/10.3109/03602532.2011.577781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thakkar N, Slizgi JR, Brouwer KLR. Effect of liver disease on hepatic transporter expression and function. J Pharm Sci. 2017;106:2282–94. https://doi.org/10.1016/j.xphs.2017.04.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murray M, Zaluzny L, Dannan GA, Guengerich FP, Farrell GC. Altered regulation of cytochrome P-450 enzymes in choline-deficient cirrhotic male rat liver: Impaired regulation and activity of the male-specific androst-4-ene-17-dione 16α-hydroxylase, cytochrome P-450UT-A, in hepatic cirrhosis. Mol Pharmacol. 1987;31:117–21.

    CAS  PubMed  Google Scholar 

  34. Murray M, Zaluzny L, Farrell GC. Impaired androgen 16α-hydroxylation in hepatic microsomes from carbon tetrachloride-cirrhotic male rats. Gastroenterology. 1987;93:141–7. https://doi.org/10.1016/0016-5085(87)90326-x.

    Article  CAS  PubMed  Google Scholar 

  35. Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450. Xenobiotica. 1999;29:109–54. https://doi.org/10.1080/004982599238704.

    Article  CAS  PubMed  Google Scholar 

  36. Alvarez AI, Real R, Pérez M, Mendoza G, Prieto JG, Merino G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci. 2010;99:598–617. https://doi.org/10.1002/jps.21851.

    Article  CAS  PubMed  Google Scholar 

  37. Guo Y, Cui JY, Lu H, Klaassen CD. Effect of nine diets on xenobiotic transporters in livers of mice. Xenobiotica. 2015;45:634–41. https://doi.org/10.3109/00498254.2014.1001009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. US Food and Drug Administration. Highlights of prescribing information: Mavyret. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209394s000lbl.pdf. (Accessed 22 April 2023).

  39. US Food and Drug Administration. Highlights of prescribing information: Vosevi. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209195s000lbl.pdf. (Accessed 22 April 2023).

  40. US Food and Drug Administration. Highlights of prescribing information: Zepatier. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208261s002lbl.pdf. (Accessed 22 April 2023).

  41. US Food and Drug Administration. Highlights of prescribing information: Daklinza. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/206843s006lbl.pdf. (Accessed 22 April 2023).

  42. US Food and Drug Administration. Highlights of prescribing information: Harvoni. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205834s017lbl.pdf. (Accessed 22 April 2023).

  43. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet. 1995;29:192–209. https://doi.org/10.2165/00003088-199529030-00005.

    Article  CAS  PubMed  Google Scholar 

  44. Ito S, Ieiri I, Tanabe M, Suzuki A, Higuchi S, Otsubo K. Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics. 2001;11:175–84. https://doi.org/10.1097/00008571-200103000-00008.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev. 2017;116:21–36. https://doi.org/10.1016/j.addr.2016.06.004.

    Article  CAS  PubMed  Google Scholar 

  46. Nozaki Y, Izumi S. Preincubation time-dependent, long-lasting inhibition of drug transporters and impact on the prediction of drug-drug interactions. Drug Metab Dispos. 2023. https://doi.org/10.1124/dmd.122.000970.

    Article  PubMed  Google Scholar 

  47. Pharmaceuticals and Medical Devices Agency (Japan). Review Report: Maviret. 2023. https://pmda.go.jp/files/000230308.pdf. (Accessed 20 April 2023).

  48. Pharmaceuticals and Medical Devices Agency (Japan). Review Report: Grazoprevir. 2023. https://pmda.go.jp/files/000224902.pdf. (Accessed 20 April 2023).

  49. https://www.tga.gov.au/sites/default/files/auspar-sofosbuvir-velpatasvir-voxilaprevir-190304.pdf (Accessed 18 April 2023).

  50. Lin CW, Dutta S, Ding B, Wang T, Zadeikis N, Asatryan A, Kort J, Campbell A, Podsadecki T, Liu W. Pharmacokinetics, safety, and tolerability of glecaprevir and pibrentasvir in healthy White, Chinese, and Japanese adult subjects. J Clin Pharmacol. 2017;57:1616–24. https://doi.org/10.1002/jcph.959.

    Article  CAS  PubMed  Google Scholar 

  51. Lin CW, Dutta S, Asatryan A, Chiu YL, Wang H, Clifton J 2nd, Campbell A, Liu W. Pharmacokinetics, safety, and tolerability of single and multiple doses of ABT-493: a first-in-human study. J Pharm Sci. 2017;106:645–51. https://doi.org/10.1016/j.xphs.2016.10.007.

    Article  CAS  PubMed  Google Scholar 

  52. Smolders EJ, Jansen AME, Ter Horst PGJ, Rockstroh J, Back DJ, Burger DM. Viral hepatitis C therapy: pharmacokinetic and pharmacodynamic considerations—a 2019 update. Clin Pharmacokinet. 2019;58:1237–63. https://doi.org/10.1007/s40262-019-00774-0.

    Article  PubMed  PubMed Central  Google Scholar 

  53. https://clinicaltrials.gov/ct2/show/NCT02533427 (Accessed 17 April 2023).

  54. European Medicines Agency. Vosevi: assessment report. 2023. https://www.ema.europa.eu/en/documents/assessment-report/voxevi-epar-public-assessment-report_en.pdf. (Accessed 23 April 2023).

  55. Brainard DM, Petry A, Anderson MS, Mitselos A, Laethem T, Heirman I, Caro L, Stone JA, Sun P, Panorchan P, Van Bortel LM, Iwamoto M, Wagner JA. Safety, tolerability, and pharmacokinetics after single and multiple doses of MK-5172, a novel HCV NS3/4A protease inhibitor with potent activity against known resistance mutants, in healthy subjects. Hepatology. 2010;52:1216A-A1217.

    Google Scholar 

  56. Summa V, Ludmerer SW, McCauley JA, Fandozzi C, Burlein C, Claudio G, Coleman PJ, Dimuzio JM, Ferrara M, Di Filippo M, Gates AT, Graham DJ, Harper S, Hazuda DJ, Huang Q, McHale C, Monteagudo E, Pucci V, Rowley M, Rudd MT, Soriano A, Stahlhut MW, Vacca JP, Olsen DB, Liverton NJ, Carroll SS. MK-5172, a selective inhibitor of hepatitis C virus NS3/4A protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother. 2012;56:4161–7. https://doi.org/10.1128/AAC.00324-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pharmaceuticals and Medical Devices Agency (Japan). Review Report: Harvoni. 2023. https://pmda.go.jp/files/000215262.pdf. (Accessed 20 April 2023).

  58. Kiang TKL. Clinical pharmacokinetics and drug-drug interactions of elbasvir/grazoprevir. Eur J Drug Metab Pharmacokinet. 2018;43:509–31. https://doi.org/10.1007/s13318-018-0471-0.

    Article  CAS  PubMed  Google Scholar 

  59. Pharmaceuticals and Medical Devices Agency (Japan). Review Report: Daklinza. 2023. https://pmda.go.jp/files/000209021.pdf. (Accessed 20 April 2023).

  60. US Food and Drug Administration. Highlights of prescribing information: Epclusa. 2016. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208341s000lbl.pdf. (Accessed 9 July 2023).

  61. Eley T, Han YH, Huang SP, He B, Li W, Bedford W, Stonier M, Gardiner D, Sims K, Rodrigues AD, Bertz RJ. Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin Pharmacol Ther. 2015;97:159–66. https://doi.org/10.1002/cpt.4.

    Article  CAS  PubMed  Google Scholar 

  62. Pharmaceuticals and Medical Devices Agency (Japan). Review Report: Elbasvir. 2023. https://pmda.go.jp/files/000224903.pdf. (Accessed 20 April 2023).

  63. Li W, Zhao W, Liu X, Huang X, Lopez OD, Leet JE, Fancher RM, Nguyen V, Goodrich J, Easter J, Hong Y, Caceres-Cortes J, Chang SY, Ma L, Belema M, Hamann LG, Gao M, Zhu M, Shu YZ, Humphreys WG, Johnson BM. Biotransformation of daclatasvir in vitro and in nonclinical species: Formation of the main metabolite by pyrrolidine δ-oxidation and rearrangement. Drug Metab Dispos. 2016;44:809–20. https://doi.org/10.1124/dmd.115.068866.

    Article  CAS  PubMed  Google Scholar 

  64. Murray M. Complexation of cytochrome P-450 isoenzymes in hepatic microsomes from SKF 525-A-induced rats. Arch Biochem Biophys. 1988;262:381–8. https://doi.org/10.1016/0003-9861(88)90202-0.

    Article  CAS  PubMed  Google Scholar 

  65. Murray M, Field SL. Inhibition and metabolite complexation of rat hepatic microsomal cytochrome P450 by tricyclic antidepressants. Biochem Pharmacol. 1992;43:2065–71. https://doi.org/10.1016/0006-2952(92)90163-d.

    Article  CAS  PubMed  Google Scholar 

  66. Murray M, Wilkinson CF, Marcus C, Dubé CE. Structure-activity relationships in the interactions of alkoxymethylenedioxybenzene derivatives with rat hepatic microsomal mixed-function oxidases in vivo. Mol Pharmacol. 1983;24:129–36.

    CAS  PubMed  Google Scholar 

  67. Marcus CB, Murray M, Wilkinson CF. Spectral and inhibitory interactions of methylenedioxyphenyl and related compounds with purified isozymes of cytochrome P-450. Xenobiotica. 1985;15:351–62. https://doi.org/10.3109/00498258509045370.

    Article  CAS  PubMed  Google Scholar 

  68. Murray M, Butler AM, Stupans I. Competitive inhibition of human liver microsomal P450 3A-dependent steroid 6β-hydroxylation activity by cyclophosphamide and ifosfamide in vitro. J Pharmacol Exp Ther. 1994;270:645–9.

    CAS  PubMed  Google Scholar 

  69. Moreno RL, Kent UM, Hodge K, Hollenberg PF. Inactivation of cytochrome P450 2E1 by benzyl isothiocyanate. Chem Res Toxicol. 1999;12:582–7. https://doi.org/10.1021/tx9900019.

    Article  CAS  PubMed  Google Scholar 

  70. Ortiz de Montellano PR, Kunze KL, Beilan HS, Wheeler C. Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry. 1982;21:1331-9. doi: https://doi.org/10.1021/bi00535a035.

  71. Wilkinson CF, Hetnarski K, Yellin TO. Imidazole derivatives–a new class of microsomal enzyme inhibitors. Biochem Pharmacol. 1972;21:3187–92. https://doi.org/10.1016/0006-2952(72)90147-5.

    Article  CAS  PubMed  Google Scholar 

  72. Mogalian E, German P, Kearney BP, Yang CY, Brainard D, McNally J, Moorehead L, Mathias A. Use of multiple probes to assess transporter- and cytochrome P450-mediated drug-drug interaction potential of the pangenotypic HCV NS5A inhibitor velpatasvir. Clinical Pharmacokinet. 2016;55:605–13. https://doi.org/10.1007/s40262-015-0334-7.

    Article  CAS  Google Scholar 

  73. https://clinicaltrials.gov/ct2/show/NCT02002767 (Accessed 17 April 2023).

  74. Soriano V, Benítez-Gutiérrez L, Arias A, Carrasco I, Barreiro P, Peña JM, de Mendoza C. Evaluation of sofosbuvir, velpatasvir plus voxilaprevir as fixed-dose co-formulation for treating hepatitis C. Expert Opin Drug Metab Toxicol. 2017;13:1015–22. https://doi.org/10.1080/17425255.2017.1359254.

    Article  CAS  PubMed  Google Scholar 

  75. Li C, Li X, Zhu X, Zhang H, Shen G, Kersey K, Ding Y. Pharmacokinetics, safety, and tolerability of ledipasvir/sofosbuvir and sofosbuvir/velpatasvir in healthy Chinese subjects. Clin Ther. 2020;42:448–57. https://doi.org/10.1016/j.clinthera.2020.01.013.

    Article  CAS  PubMed  Google Scholar 

  76. German P, Mathias A, Brainard DM, Kearney BP. Drug-drug interaction profile of the fixed-dose combination tablet regimen ledipasvir/sofosbuvir. Clin Pharmacokinet. 2018;57:1369–83. https://doi.org/10.1007/s40262-018-0654-5.

    Article  CAS  PubMed  Google Scholar 

  77. Ankrom W, Sanchez RI, Yee KL, Fan L, Mitra P, Wolford D, Triantafyllou I, Sterling LM, Stoch SA, Iwamoto M, Khalilieh S. Investigation of pharmacokinetic interactions between doravirine and elbasvir-grazoprevir and ledipasvir-sofosbuvir. Antimicrob Agents Chemother. 2019;63:e02491-e2518. https://doi.org/10.1128/AAC.02491-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. https://clinicaltrials.gov/ct2/show/NCT01937975 (Accessed 17 April 2023).

  79. https://clinicaltrials.gov/ct2/show/NCT01797536 (Accessed 17 April 2023).

  80. Cheung TT, Chiu JWY, Yuen MF, Lam KSL, Cheung BMY, Feng HP, Yeh WW, Wang J, Li W, Zhao XM, Wang Z, Mu S. A Phase I, single- and multiple-dose study to evaluate the pharmacokinetics of elbasvir and grazoprevir in healthy Chinese participants. Clin Ther. 2018;40:719-732.e1. https://doi.org/10.1016/j.clinthera.2018.03.014.

    Article  CAS  PubMed  Google Scholar 

  81. https://clinicaltrials.gov/ct2/show/NCT01830205 (Accessed 17 April 2023).

  82. Esposito I, Marciano S, Trinks J. Pharmacokinetic and pharmacodynamic evaluation of daclatasvir, asunaprevir plus beclabuvir as a fixed-dose co-formulation for the treatment of hepatitis C. Expert Opin Drug Metab Toxicol. 2018;14:649–57. https://doi.org/10.1080/17425255.2018.1483336.

    Article  CAS  PubMed  Google Scholar 

  83. Pharmaceuticals and Medical Devices Agency (Japan). Review Report: Ximency. 2023. https://pmda.go.jp/files/000226231.pdf. (Accessed 20 April 2023).

  84. https://clinicaltrials.gov/ct2/show/NCT00859053 (Accessed 17 April 2023).

  85. Kirby BJ, Symonds WT, Kearney BP, Mathias AA. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of the hepatitis C virus NS5B polymerase inhibitor sofosbuvir. Clin Pharmacokinet. 2015;54:677–90. https://doi.org/10.1007/s40262-015-0261-7.

    Article  CAS  PubMed  Google Scholar 

  86. King JR, Dutta S, Cohen D, Podsadecki TJ, Ding B, Awni WM, Menon RM. Drug-Drug Interactions between sofosbuvir and ombitasvir-paritaprevir-ritonavir with or without dasabuvir. Antimicrob Agents Chemother. 2015;60:855–61. https://doi.org/10.1128/AAC.01913-15.

    Article  CAS  PubMed  Google Scholar 

  87. Indolfi G, Kelly D, Nebbia G, Iorio R, Mania A, Giacomet V, Szenborn L, Shao J, Sang Yue M, Hsueh CH, Parhy B, Kersey K, Mangia A, Pawlowska M, Bansal S. Sofosbuvir-velpatasvir-voxilaprevir in adolescents 12 to 17 years old with HCV infection. Hepatology. 2022;76:445–55. https://doi.org/10.1002/hep.32393.

    Article  CAS  PubMed  Google Scholar 

  88. Cuenca-Lopez F, Rivero A, Rivero-Juárez A. Pharmacokinetics and pharmacodynamics of sofosbuvir and ledipasvir for the treatment of hepatitis C. Expert Opin Drug Metab Toxicol. 2017;13:105–12. https://doi.org/10.1080/17425255.2017.1255725.

    Article  CAS  PubMed  Google Scholar 

  89. Kiser JJ, Burton JR, Anderson PL, Everson GT. Review and management of drug interactions with boceprevir and telaprevir. Hepatology. 2012;55:1620–8. https://doi.org/10.1002/hep.25653.

    Article  CAS  PubMed  Google Scholar 

  90. US Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions. 2020. (Accessed 17 July 2023).

  91. Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal drug interactions mediated by OATPs: a systematic review of preclinical and clinical findings. J Pharm Sci. 2017;106:2312–25. https://doi.org/10.1016/j.xphs.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  92. Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, Gotoh Y, Iwatsubo T, Kanamitsu SI, Kato M, Kawahara I, Niinuma K, Nishino A, Sato N, Tsukamoto Y, Ueda K, Itoh T, Sugiyama Y. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci. 2002;4:E25. https://doi.org/10.1208/ps040425.

    Article  PubMed  Google Scholar 

  93. Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev. 1998;50:387–412.

    CAS  PubMed  Google Scholar 

  94. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36. https://doi.org/10.1038/nrd3028.

    Article  CAS  PubMed  Google Scholar 

  95. Parkinson A. Regulatory recommendations for calculating the unbound maximum hepatic inlet concentration: a complicated story with a surprising and happy ending. Drug Metab Dispos. 2019;47:779–84. https://doi.org/10.1124/dmd.119.086496.

    Article  CAS  PubMed  Google Scholar 

  96. Kosloski MP, Bow DAJ, Kikuchi R, Wang H, Kim EJ, Marsh K, Mensa F, Kort J, Liu W. Translation of in vitro transport inhibition studies to clinical drug-drug interactions for glecaprevir and pibrentasvir. J Pharmacol Exp Ther. 2019;370:278–87. https://doi.org/10.1124/jpet.119.256966.

    Article  CAS  PubMed  Google Scholar 

  97. Yu J, Petrie ID, Levy RH, Ragueneau-Majlessi I. Mechanisms and clinical significance of pharmacokinetic-based drug-drug interactions with drugs approved by the US Food and Drug Administration in 2017. Drug Metab Dispos. 2019;47:135–44. https://doi.org/10.1124/dmd.118.084905.

    Article  CAS  PubMed  Google Scholar 

  98. European Medicines Agency. Maviret:assessment report. 2023. https://www.ema.europa.eu/en/documents/assessment-report/maviret-epar-public-assessment-report_en.pdf. (Accessed 23 April 2023).

  99. Gandhi Y, Eley T, Fura A, Li W, Bertz RJ, Garimella T. Daclatasvir: A review of preclinical and clinical pharmacokinetics. Clinical Pharmacokinet. 2018;57:911–28. https://doi.org/10.1007/s40262-017-0624-3.

    Article  CAS  Google Scholar 

  100. Kalgutkar AS, Soglia JR. Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol. 2005;1:91–142. https://doi.org/10.1517/17425255.1.1.91.

    Article  CAS  PubMed  Google Scholar 

  101. Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Risk of clinically relevant pharmacokinetic-based drug-drug interactions with drugs approved by the US Food and Drug Administration between 2013 and 2016. Drug Metab Dispos. 2018;46:835–45. https://doi.org/10.1124/dmd.117.078691.

    Article  CAS  PubMed  Google Scholar 

  102. US Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review: Vosevi. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209195Orig1s000ClinPharmR.pdf. (Accessed 12 July 2023).

  103. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130:1793–806. https://doi.org/10.1053/j.gastro.2006.02.034.

    Article  CAS  PubMed  Google Scholar 

  104. Wang Q, Zheng M, Leil T. Investigating transporter-mediated drug-drug interactions using a physiologically based pharmacokinetic model of rosuvastatin. CPT Pharmacometrics Syst Pharmacol. 2017;6:228–38. https://doi.org/10.1002/psp4.12168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kivistö KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res. 2007;24:239–47. https://doi.org/10.1007/s11095-006-9159-2.

    Article  CAS  PubMed  Google Scholar 

  106. Bogman K, Peyer AK, Török M, Küsters E, Drewe J. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br J Pharmacol. 2001;132:1183–92. https://doi.org/10.1038/sj.bjp.0703920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Afrouzian M, Al-Lahham R, Patrikeeva S, Xu M, Fokina V, Fischer WG, Abdel-Rahman SZ, Costantine M, Ahmed MS, Nanovskaya T. Role of the efflux transporters BCRP and MRP1 in human placental bio-disposition of pravastatin. Biochem Pharmacol. 2018;156:467–78. https://doi.org/10.1016/j.bcp.2018.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Seithel A, Eberl S, Singer K, Auge D, Heinkele G, Wolf NB, Dörie F, Fromm MF, König J. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos. 2007;35:779–86. https://doi.org/10.1124/dmd.106.014407.

    Article  CAS  PubMed  Google Scholar 

  109. Vildhede A, Karlgren M, Svedberg EK, Wisniewski JR, Lai Y, Norén A, Artursson P. Hepatic uptake of atorvastatin: influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug Metab Dispos. 2014;42:1210–8. https://doi.org/10.1124/dmd.113.056309.

    Article  CAS  PubMed  Google Scholar 

  110. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158:693–705. https://doi.org/10.1111/j.1476-5381.2009.00430.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goard CA, Mather RG, Vinepal B, Clendening JW, Martirosyan A, Boutros PC, Sharom FJ, Penn LZ. Differential interactions between statins and P-glycoprotein: implications for exploiting statins as anticancer agents. Int J Cancer. 2010;127:2936–48. https://doi.org/10.1002/ijc.25295.

    Article  CAS  PubMed  Google Scholar 

  112. Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, Hidalgo IJ. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos. 2011;39:1196–202. https://doi.org/10.1124/dmd.111.038075.

    Article  CAS  PubMed  Google Scholar 

  113. Tornio A, Vakkilainen J, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of lovastatin acid. Pharmacogenet Genomics. 2015;25:382–7. https://doi.org/10.1097/FPC.0000000000000148.

    Article  CAS  PubMed  Google Scholar 

  114. Hochman JH, Pudvah N, Qiu J, Yamazaki M, Tang C, Lin JH, Prueksaritanont T. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 2004;21:1686–91. https://doi.org/10.1023/b:pham.0000041466.84653.8c.

    Article  CAS  PubMed  Google Scholar 

  115. Ishiguro N, Kishimoto W, Volz A, Ludwig-Schwellinger E, Ebner T, Schaefer O. Impact of endogenous esterase activity on in vitro P-glycoprotein profiling of dabigatran etexilate in Caco-2 monolayers. Drug Metab Dispos. 2014;42:250–6. https://doi.org/10.1124/dmd.113.053561.

    Article  CAS  PubMed  Google Scholar 

  116. Shen H, Yao M, Sinz M, Marathe P, Rodrigues AD, Zhu M. Renal excretion of dabigatran: the potential role of multidrug and toxin extrusion (MATE) proteins. Mol Pharm. 2019;16:4065–76. https://doi.org/10.1021/acs.molpharmaceut.9b00472.

    Article  CAS  PubMed  Google Scholar 

  117. Udomnilobol U, Jianmongkol S, Prueksaritanont T. The potentially significant role of CYP3A-mediated oxidative metabolism of dabigatran etexilate and its intermediate metabolites in drug-drug interaction assessments using microdose dabigatran etexilate. Drug Metab Dispos. 2023. https://doi.org/10.1124/dmd.123.001353.

    Article  PubMed  Google Scholar 

  118. Garimella T, You X, Wang R, Huang SP, Kandoussi H, Bifano M, Bertz R, Eley T. A Review of daclatasvir drug-drug interactions. Adv Ther. 2016;33:1867–84. https://doi.org/10.1007/s12325-016-0407-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. https://www.ema.europa.eu/en/documents/product-information/zepatier-epar-product-information_en.pdf (accessed July 12, 2023)/

  120. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation. 1999;99:552–7. https://doi.org/10.1161/01.cir.99.4.552.

    Article  CAS  PubMed  Google Scholar 

  121. Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013;61:2495–502. https://doi.org/10.1016/j.jacc.2013.02.058.

    Article  CAS  PubMed  Google Scholar 

  122. Millard DC, Strock CJ, Carlson CB, Aoyama N, Juhasz K, Goetze TA, Stoelzle-Feix S, Becker N, Fertig N, January CT, Anson BD, Ross JD. Identification of drug-drug interactions in vitro: A case study evaluating the effects of sofosbuvir and amiodarone on hiPSC-derived cardiomyocytes. Toxicol Sci. 2016;154:174–82. https://doi.org/10.1093/toxsci/kfw153.

    Article  CAS  PubMed  Google Scholar 

  123. https://www.hep-druginteractions.org/drug_queries/21504/drug_query_interactions. (Accessed 17 April 2023).

  124. Lin CW, Dutta S, Zhao W, Asatryan A, Campbell A, Liu W. Pharmacokinetic interactions and safety of coadministration of glecaprevir and pibrentasvir in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2018;43:81–90. https://doi.org/10.1007/s13318-017-0428-8.

    Article  CAS  PubMed  Google Scholar 

  125. Kosloski M, Li H, Wang S, Mensa F, Kort J, Liu W. Characterizing complex and competing drug-drug interactions between the antiviral regimen of glecaprevir and pibrentasvir with rifampin or carbamazepine. Clin Transl Sci. 2023;16:593–605. https://doi.org/10.1111/cts.13471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang Y, Li P, Zhang Z, Wang Z, Liu L, Liu X. Prediction of cyclosporin-mediated drug interaction using physiologically based pharmacokinetic model characterizing interplay of drug transporters and enzymes. Int J Mol Sci. 2020;21:7023. https://doi.org/10.3390/ijms21197023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Feng HP, Caro L, Fandozzi C, Chu X, Guo Z, Talaty J, Panebianco D, Dunnington K, Du L, Hanley WD, Fraser IP, Mitselos A, Denef JF, De Lepeleire I, de Hoon JN, Vandermeulen C, Marshall WL, Jumes P, Huang X, Martinho M, Valesky R, Butterton JR, Iwamoto M, Yeh WW. Pharmacokinetic interactions between the hepatitis C virus inhibitors elbasvir and grazoprevir and HIV protease inhibitors ritonavir, atazanavir, lopinavir, and darunavir in healthy volunteers. Antimicrob Agents Chemother. 2019;63:e02142-e2218. https://doi.org/10.1128/AAC.02142-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bifano M, Adamczyk R, Hwang C, Kandoussi H, Marion A. Bertz RJ An open-label investigation into drug-drug interactions between multiple doses of daclatasvir and single-dose cyclosporine or tacrolimus in healthy subjects. Clinical Drug Invest. 2015;35:281–9. https://doi.org/10.1007/s40261-015-0279-5.

    Article  CAS  Google Scholar 

  129. Tirona RG, Leake BF, Wolkoff AW, Kim RB. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther. 2003;304:223–8. https://doi.org/10.1124/jpet.102.043026.

    Article  CAS  PubMed  Google Scholar 

  130. Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of the HIV protease inhibitors 3: Effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion. Drug Metab Dispos. 2012;40:610–6. https://doi.org/10.1124/dmd.111.042705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002;36:164–72. https://doi.org/10.1053/jhep.2002.34133.

    Article  CAS  PubMed  Google Scholar 

  132. Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem. 2012;55:4740–63. https://doi.org/10.1021/jm300212s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Te Brake LHM, Russel FGM, van den Heuvel JJMW, de Knegt GJ, de Steenwinkel JE, Burger DM, Aarnoutse RE, Koenderink JB. Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis. 2016;96:150–7. https://doi.org/10.1016/j.tube.2015.08.004.

    Article  CAS  Google Scholar 

  134. Creamer BA, Sloan SNB, Dennis JF, Rogers R, Spencer S, McCuen A, Persaud P, Staudinger JL. Associations between pregnane X receptor and breast cancer growth and progression. Cells. 2020;9:2295. https://doi.org/10.3390/cells9102295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kosloski M, Zhao W, Li H, Pugatch D, Asatryan A, Kort J, Mensa FJ, Liu W. Drug-drug interactions of tacrolimus or cyclosporine with glecaprevir and pibrentasvir in healthy subjects. Clin Pharmacol Drug Dev. 2019;8:779–89. https://doi.org/10.1002/cpdd.671.

    Article  CAS  PubMed  Google Scholar 

  136. Gobran ST, Ancuta P, Shoukry NH. A tale of two viruses: immunological insights into HCV/HIV coinfection. Front Immunol. 2021;12: 726419. https://doi.org/10.3389/fimmu.2021.726419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bierman WFW, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother. 2010;65:1672–80. https://doi.org/10.1093/jac/dkq209.

    Article  CAS  PubMed  Google Scholar 

  138. Shitara Y, Takeuchi K, Horie T. Long-lasting inhibitory effects of saquinavir and ritonavir on OATP1B1-mediated uptake. J Pharm Sci. 2013;102:3427–35. https://doi.org/10.1002/jps.23477.

    Article  CAS  PubMed  Google Scholar 

  139. Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997;44:190–4. https://doi.org/10.1046/j.1365-2125.1997.00644.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lepist EI, Zhang X, Hao J, Huang J, Kosaka A, Birkus G, Murray BP, Bannister R, Cihlar T, Huang Y, Ray AS. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 2014;86:350–7. https://doi.org/10.1038/ki.2014.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. https://liverpool-hiv-hep.s3.amazonaws.com/fact_sheets/pdfs/000/000/118/original/HIV_FactSheet_Cobi_2016_Mar.pdf?1458130953 (Accessed 17 April 2023).

  142. Marzolini C, Gibbons S, Khoo S, Back D. Cobicistat versus ritonavir boosting and differences in the drug–drug interaction profiles with co-medications. J Antimicrob Chemother. 2016;71:1755–8. https://doi.org/10.1093/jac/dkw032.

    Article  CAS  PubMed  Google Scholar 

  143. Kosloski MP, Oberoi R, Wang S, Viani RM, Asatryan A, Hu B, Ding B, Qi X, Kim EJ, Mensa F, Kort J, Liu W. Drug-drug interactions of glecaprevir and pibrentasvir coadministered with Human Immunodeficiency Virus antiretrovirals. J Infect Dis. 2020;221:223–31. https://doi.org/10.1093/infdis/jiz439.

    Article  CAS  PubMed  Google Scholar 

  144. Mogalian E, Stamm LM, Osinusi A, Brainard DM, Shen G, Ling KHJ, Mathias A. Drug-drug interaction studies between hepatitis C virus antivirals sofosbuvir/velpatasvir and boosted and unboosted Human Immunodeficiency Virus antiretroviral regimens in healthy volunteers. Clin Infect Dis. 2018;67:934–40. https://doi.org/10.1093/cid/ciy201.

    Article  CAS  PubMed  Google Scholar 

  145. US Food and Drug Administration. Highlights of prescribing information: Solvaldi. 2013. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204671s000lbl.pdf. (Accessed 22 April 2023).

  146. Feng HP, Guo Z, Fandozzi C, Panebianco D, Caro L, Wolford D, Dreyer DP, Valesky R, Martinho M, Rizk ML, Iwamoto M, Yeh WW. Pharmacokinetic interactions between the fixed-dose combinations of elvitegravir/cobicistat/tenofovir disoproxil fumarate/emtricitabine and elbasvir/grazoprevir in healthy adult participants. Clin Pharmacol Drug Developm. 2019;8:952–61. https://doi.org/10.1002/cpdd.702.

    Article  CAS  Google Scholar 

  147. Zeng Q, Bai M, Li C, Lu S, Ma Z, Zhao Y, Zhou H, Jiang H, Sun D, Zheng C. Multiple drug transporters contribute to the placental transfer of emtricitabine. Antimicrob Agents Chemother. 2019;63:e00199-e219. https://doi.org/10.1128/AAC.00199-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, Clotet B, Pastor-Anglada M, Koepsell H, Martinez-Picado J. Transport of lamivudine [(-)-beta-L-2’,3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329:252–61. https://doi.org/10.1124/jpet.108.146225.

    Article  CAS  PubMed  Google Scholar 

  149. Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE. Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos. 2007;35:340–4. https://doi.org/10.1124/dmd.106.012765.

    Article  CAS  PubMed  Google Scholar 

  150. Dussault I, Lin M, Hollister K, Wang EH, Synold TW, Forman BM. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem. 2001;276:33309–12. https://doi.org/10.1074/jbc.C100375200.

    Article  CAS  PubMed  Google Scholar 

  151. Tamai H, Okamura J. Risk factors of glecaprevir/pibrentasvir-induced liver injury and efficacy of ursodeoxycholic acid. Viruses. 2023;15:489. https://doi.org/10.3390/v15020489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sulejmani N, Jafri SM, Gordon SC. Pharmacodynamics and pharmacokinetics of elbasvir and grazoprevir in the treatment of hepatitis C. Expert Opin Drug Metab Toxicol. 2016;12:353–61. https://doi.org/10.1517/17425255.2016.1148685.

    Article  CAS  PubMed  Google Scholar 

  153. Garrison KL, German P, Mogalian E, Mathias A. The drug-drug interaction potential of antiviral agents for the treatment of chronic hepatitis C infection. Drug Metab Dispos. 2018;46:1212–25. https://doi.org/10.1124/dmd.117.079038.

    Article  CAS  PubMed  Google Scholar 

  154. Sodhi JK, Benet LZ. A simple methodology to differentiate changes in bioavailability from changes in clearance following oral dosing of metabolized drugs. Clin Pharmacol Ther. 2020;108:306–15. https://doi.org/10.1002/cpt.1828.

    Article  CAS  PubMed  Google Scholar 

  155. https://clinicaltrials.gov/ct2/show/NCT03067129 (Accessed 17 April 2023).

  156. https://clinicaltrials.gov/ct2/show/NCT02402452 (Accessed 17 April 2023).

  157. Caro L, Wenning L, Guo Z, Fraser IP, Fandozzi C, Talaty J, Panebianco D, Ho M, Uemura N, Reitmann C, Angus P, Gane E, Marbury T, Smith WB, Iwamoto M, Butterton JR, Yeh WW. Effect of hepatic impairment on the pharmacokinetics of grazoprevir, a hepatitis C virus protease inhibitor. Antimicrob Agents Chemother. 2017;61:e00813-e817. https://doi.org/10.1128/AAC.00813-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. https://clinicaltrials.gov/ct2/show/NCT02159352 (Accessed 17 April 2023).

  159. Furihata T, Matsumoto S, Fu Z, Tsubota A, Sun Y, Matsumoto S, Kobayashi K, Chiba K. Different interaction profiles of direct-acting anti-hepatitis C virus agents with human organic anion transporting polypeptides. Antimicrob Agents Chemother. 2014;58:4555–64. https://doi.org/10.1128/AAC.02724-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Al-Nahari MM, Abbassi MM, Ebeid FS, Hassany M, El-Sayed MH, Farid SF. Pharmacokinetics of daclatasvir in Egyptian adolescents with genotype-4 HCV infection. Antiviral Ther. 2020;25:101–10. https://doi.org/10.3851/IMP3357.

    Article  CAS  Google Scholar 

  161. Ramsden D, Fullenwider CL. Characterization of correction factors to enable assessment of clinical risk from in vitro CYP3A4 induction data and basic drug–drug interaction models. Eur J Drug Metab Pharmacokinet. 2022;47:467–82. https://doi.org/10.1007/s13318-022-00763-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. https://www.tga.gov.au/sites/default/files/auspar-grazoprevir-170515.pdf. (Accessed 18 April 2023).

  163. https://www.tga.gov.au/sites/default/files/auspar-sofosbuvir-velpatasvir-171108-pi.pdf. (Accessed 18 April 2023).

  164. https://www.tga.gov.au/sites/default/files/auspar-ledipasvir-sofosbuvir-171020-pi.pdf. (Accessed 18 April 2023).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Murray.

Ethics declarations

Author Contributions

Conceptualisation, Methodology, Data curation, formal analysis, investigation, Visualisation and Writing: M.M.

Funding

The author received no funding for this work.

Conflict of interests

The author declares no competing interests for this work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, M. Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents. Clin Pharmacokinet 62, 1365–1392 (2023). https://doi.org/10.1007/s40262-023-01302-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01302-x

Navigation