Skip to main content
Log in

Escitalopram and Sertraline Population Pharmacokinetic Analysis in Pediatric Patients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Escitalopram and sertraline are commonly prescribed for anxiety and depressive disorders in children and adolescents. The pharmacokinetics (PK) of these medications have been evaluated in adults and demonstrate extensive variability, but studies in pediatric patients are limited. Therefore, we performed a population PK analysis for escitalopram and sertraline in children and adolescents to characterize the effects of demographic, clinical, and pharmacogenetic factors on drug exposure.

Methods

A PK dataset was generated by extracting data from the electronic health record and opportunistic sampling of escitalopram- and sertraline-treated psychiatrically hospitalized pediatric patients aged 5–18 years. A population PK analysis of escitalopram and sertraline was performed using NONMEM. Concentration-time profiles were simulated using MwPharm++ to evaluate how covariates included in the final models influence medication exposure and compared to adult therapeutic reference ranges.

Results

The final escitalopram cohort consisted of 315 samples from 288 patients, and the sertraline cohort consisted of 265 samples from 255 patients. A one-compartment model with a proportional residual error model best described the data for both medications. For escitalopram, CYP2C19 phenotype and concomitant CYP2C19 inhibitors affected apparent clearance (CL/F), and normalizing CL/F and apparent volume of distribution (V/F) to body surface area (BSA) improved estimations. The final escitalopram model estimated CL/F and V/F at 14.2 L/h/1.73 m2 and 428 L/1.73 m2, respectively. For sertraline, CYP2C19 phenotype and concomitant CYP2C19 inhibitors influenced CL/F, and empirical allometric scaling of patient body weight on CL/F and V/F was significant. The final sertraline model estimated CL/F and V/F at 124 L/h/70 kg and 4320 L/70 kg, respectively. Normalized trough concentrations (Ctrough) for CYP2C19 poor metabolizers taking escitalopram were 3.98-fold higher compared to normal metabolizers (151.1 ng/mL vs 38.0 ng/mL, p < 0.0001), and normalized Ctrough for CYP2C19 poor metabolizers taking sertraline were 3.23-fold higher compared to normal, rapid, and ultrarapid metabolizers combined (121.7 ng/mL vs 37.68 ng/mL, p < 0.0001). Escitalopram- and sertraline-treated poor metabolizers may benefit from a dose reduction of 50–75% and 25–50%, respectively, to normalize exposure to other phenotypes.

Conclusion

To our knowledge, this is the largest population PK analysis of escitalopram and sertraline in pediatric patients. Significant PK variability for both medications was observed and was largely explained by CYP2C19 phenotype. Slower CYP2C19 metabolizers taking escitalopram or sertraline may benefit from dose reductions given increased exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hussain FS, Dobson ET, Strawn JR. Pharmacologic treatment of pediatric anxiety disorders. Curr Treat Options Psych. 2016;3:151–60.

    Article  Google Scholar 

  2. Patel DR, Feucht C, Brown K, Ramsay J. Pharmacological treatment of anxiety disorders in children and adolescents: a review for practitioners. Transl Pediatr. 2018;7:23–55.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dwyer JB, Bloch MH. Antidepressants for pediatric patients. Curr Psychiatr. 2019;18:26-42F.

    PubMed  PubMed Central  Google Scholar 

  4. Strawn JR, Mills JA, Schroeder H, Mossman SA, Varney ST, Ramsey LB, et al. Escitalopram in adolescents with generalized anxiety disorder: a double-blind, randomized, placebo-controlled study. J Clin Psychiatry. 2020;81:20m1396.

    Article  Google Scholar 

  5. Sakolsky DJ, Perel JM, Emslie GJ, Clarke GN, Wagner KD, Vitiello B, et al. Antidepressant exposure as a predictor of clinical outcomes in the Treatment of Resistant Depression in Adolescents (TORDIA) study. J Clin Psychopharmacol. 2011;31:92–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Venkatakrishnan K, Duan SX, et al. Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol Psychiat. 1999;46:839–49.

    Article  Google Scholar 

  7. Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005;33:262–70.

    Article  CAS  PubMed  Google Scholar 

  8. Hicks JK, Bishop JR, Sangkuhl K, Müller DJ, Ji Y, Leckband SG, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98:127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2017;19:215–23.

    Article  PubMed  Google Scholar 

  10. Chang M, Tybring G, Dahl M-L, Lindh JD. Impact of cytochrome P450 2C19 polymorphisms on citalopram/escitalopram exposure: a systematic review and meta-analysis. Clin Pharmacokinet. 2014;53:801–11.

    Article  CAS  PubMed  Google Scholar 

  11. Jukić MM, Haslemo T, Molden E, Ingelman-Sundberg M. Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients. AJP. 2018;175:463–70.

    Article  Google Scholar 

  12. Bråten LS, Haslemo T, Jukic MM, Ingelman-Sundberg M, Molden E, Kringen MK. Impact of CYP2C19 genotype on sertraline exposure in 1200 Scandinavian patients. Neuropsychopharmacology. 2020;45:570–6.

    Article  PubMed  Google Scholar 

  13. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther. 2008;83:322–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wang J. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;70:42–7.

    Article  CAS  PubMed  Google Scholar 

  15. Rudberg I, Hendset M, Uthus LH, Molden E, Refsum H. Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit. 2006;28:102–5.

    Article  CAS  PubMed  Google Scholar 

  16. Rudberg I, Hermann M, Refsum H, Molden E. Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol. 2008;64:1181–8.

    Article  CAS  PubMed  Google Scholar 

  17. Allegaert K, den Anker J. Ontogeny of phase I metabolism of drugs. The J Clin Pharmacol [Internet]. 2019. https://doi.org/10.1002/jcph.1483.

    Article  PubMed  Google Scholar 

  18. Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2016;56:266–83.

    Article  CAS  PubMed  Google Scholar 

  19. Rao N. The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet. 2007;46:281–90.

    Article  CAS  PubMed  Google Scholar 

  20. Food and Drug Administration. Clinical Pharmacology/Biopharmaceutics Review of Three Pharmacokinetic Studies in Adolescent Children 12-17 Years for Lexapro. (2009) [Internet]. [cited 2023 Feb 3]. https://www.accessdata.fda.gov/drugsatfda_docs/pediatric/21323_Escitalopram_clinpharm_PREA.pdf. Accessed 3 Feb 2023.

  21. Søgaard B, Mengel H, Rao N, Larsen F. The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol. 2005;45:1400–6.

    Article  PubMed  Google Scholar 

  22. Alderman J, Wolkow R, Chung M, Johnston HF. Sertraline treatment of children and adolescents with obsessive-compulsive disorder or depression: pharmacokinetics, tolerability, and efficacy. J Am Acad Child Adolesc Psychiatry. 1998;37:386–94.

    Article  CAS  PubMed  Google Scholar 

  23. Axelson DA, Perel JM, Birmaher B, Rudolph GR, Nuss S, Bridge J, et al. Sertraline pharmacokinetics and dynamics in adolescents. J Am Acad Child Adolesc Psychiatry. 2002;41:1037–44.

    Article  PubMed  Google Scholar 

  24. Ronfeld RA, Tremaine LM, Wilner KD. Pharmacokinetics of sertraline and its N-demethyl metabolite in elderly and young male and female volunteers. Clin Pharmacokinet. 1997;32:22–30.

    Article  CAS  PubMed  Google Scholar 

  25. DeVane CL, Liston HL, Markowitz JS. Clinical pharmacokinetics of sertraline. Clin Pharmacokinet. 2002;41:1247–66.

    Article  CAS  PubMed  Google Scholar 

  26. Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, Saez-Llorens X, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother. 2004;48:2166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin DK, Thakker DR. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos. 2010;38:25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry. 2011;44:195–235.

    Article  PubMed  Google Scholar 

  29. Bousman CA, Stevenson JM, Ramsey LB, Sangkuhl K, Hicks JK, Strawn JR, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin Pharmacol Ther. 2023;114(1):51–68.

  30. Strawn JR, Mills JA, Poweleit EA, Ramsey LB, Croarkin PE. Adverse effects of antidepressant medications and their management in children and adolescents. Pharmacotherapy. 2023;43(7):675–90.

  31. Van Driest SL, Marshall MD, Hachey B, Beck C, Crum K, Owen J, et al. Pragmatic pharmacology: population pharmacokinetic analysis of fentanyl using remnant samples from children after cardiac surgery: Population PK of fentanyl using remnant samples from children. Br J Clin Pharmacol. 2016;81:1165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tang Girdwood SC, Tang PH, Murphy ME, Chamberlain AR, Benken LA, Jones RL, et al. Demonstrating feasibility of an opportunistic sampling approach for pharmacokinetic studies of β-lactam antibiotics in critically ill children. J Clin Pharmacol. 2021;61:565–73.

    Article  CAS  PubMed  Google Scholar 

  33. Flockhart D, Thacker D, McDonald C, Desta Z. The Flockhart Cytochrome P450 Drug-Drug Interaction Table. Division of Clinical Pharmacology, Indiana University School of Medicine (Updated 2021) [Internet]. [cited 2023 Jan 26]. https://drug-interactions.medicine.iu.edu/. Accessed 26 Jan 2023.

  34. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

    Article  PubMed  Google Scholar 

  35. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95: 103208.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu S, Xiao T, Huang S, Li X, Kong W, Yang Y, et al. Population pharmacokinetics model for escitalopram in Chinese psychiatric patients: effect of CYP2C19 and age. Front Pharmacol. 2022;13: 964758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oliveira P, Ribeiro J, Donato H, Madeira N. Smoking and antidepressants pharmacokinetics: a systematic review. Ann Gen Psychiatry. 2017;16:17.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scherf-Clavel M, Deckert J, Menke A, Unterecker S. Smoking Is associated with lower dose-corrected serum concentrations of escitalopram. J Clin Psychopharmacol. 2019;39:485–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ramsey LB, Prows CA, Chidambaran V, Sadhasivam S, Quinn CT, Teusink-Cross A, et al. Implementation of CYP2D6-guided opioid therapy at Cincinnati Children’s Hospital Medical Center. Am J Health-Syst Pharm. 2023;80(13):852–59.

  40. Ramsey LB, Prows CA, Zhang K, Saldaña SN, Sorter MT, Pestian JP, et al. Implementation of pharmacogenetics at cincinnati children’s hospital medical center: lessons learned over 14 years of personalizing medicine. Clin Pharmacol Ther. 2019;105:49–52.

    Article  PubMed  Google Scholar 

  41. Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci. 2020;13:116–24.

    Article  PubMed  Google Scholar 

  42. Bauer RJ. NONMEM tutorial part I: description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol. 2019;8:525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mould D, Upton R. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacomet Syst Pharmacol. 2012;1:6.

    Article  Google Scholar 

  44. Courlet P, Guidi M, Glatard A, Alves Saldanha S, Cavassini M, Buclin T, et al. Escitalopram population pharmacokinetics in people living with human immunodeficiency virus and in the psychiatric population: Drug–drug interactions and probability of target attainment. Br J Clin Pharmacol. 2019;85:2022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lexapro [Package Insert] [Internet]. Allergan, Inc. 2021 [cited 2023 Jan 26]. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=13bb8267-1cab-43e5-acae-55a4d957630a. Accessed 26 Jan 2023.

  46. Zoloft [Package Insert] [Internet]. Roerig. 2021 [cited 2023 Jan 26]. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=fe9e8b7d-61ea-409d-84aa-3ebd79a046b5. Accessed 26 Jan 2023.

  47. Dubois D, Dubois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;XVII(6_2):863–71.

  48. Claudio-Campos K, Duconge J, Cadilla CL, Ruaño G. Pharmacogenetics of drug-metabolizing enzymes in US Hispanics. Drug Metab Pers Therapy [Internet]. 2015. https://doi.org/10.1515/dmdi-2014-0023/html.

    Article  Google Scholar 

  49. Koopmans AB, Braakman MH, Vinkers DJ, Hoek HW, Van Harten PN. Meta-analysis of probability estimates of worldwide variation of CYP2D6 and CYP2C19. Transl Psychiatry. 2021;11:141.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Varigonda AL, Jakubovski E, Taylor MJ, Freemantle N, Coughlin C, Bloch MH. Systematic review and meta-analysis: early treatment responses of selective serotonin reuptake inhibitors in pediatric major depressive disorder. J Am Acad Child Adolesc Psychiatry. 2015;54:557–64.

    Article  PubMed  Google Scholar 

  51. Varigonda AL, Jakubovski E, Bloch MH. Systematic review and meta-analysis: early treatment responses of selective serotonin reuptake inhibitors and clomipramine in pediatric obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 2016;55:851-859.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Strawn JR, Mills JA, Sauley BA, Welge JA. The impact of antidepressant dose and class on treatment response in pediatric anxiety disorders: a meta-analysis. J Am Acad Child Adolesc Psychiatry. 2018;57:235-244.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Pollock BG, Frank E, Florian J, Kirshner M, Fagiolini A, et al. The effect of reporting methods for dosing times on the estimation of pharmacokinetic parameters of escitalopram. J Clin Pharmacol. 2009;49:176–84.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Akil A, Bies RR, Pollock BG, Avramopoulos D, Devanand DP, Mintzer JE, et al. A population pharmacokinetic model for R- and S-citalopram and desmethylcitalopram in Alzheimer’s disease patients with agitation. J Pharmacokinet Pharmacodyn. 2016;43:99–109.

    Article  CAS  PubMed  Google Scholar 

  55. Jin Y, Pollock BG, Frank E, Cassano GB, Rucci P, Müller DJ, et al. Effect of Age, Weight, and CYP2C19 Genotype on Escitalopram Exposure. J Clin Pharmacol. 2010;50:62–72.

    Article  CAS  PubMed  Google Scholar 

  56. Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brøsen K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51:73–8.

    Article  CAS  PubMed  Google Scholar 

  57. Harvey AT, Preskorn SH. Fluoxetine pharmacokinetics and effect on CYP2C19 in young and elderly volunteers. J Clin Psychopharmacol. 2001;21:161–6.

    Article  CAS  PubMed  Google Scholar 

  58. Carlsson B, Olsson G, Reis M, Walinder J, Nordin C, Lundmark J, et al. Enantioselective analysis of citalopram and metabolites in adolescents. Ther Drug Monit. 2001;23:658–64.

    Article  CAS  PubMed  Google Scholar 

  59. Pedersen RS, Noehr-Jensen L, Brosen K. The inhibitory effect of oral contraceptives on CYP2C19 activity is not significant in carriers of the CYP2C19*17 allele. Clin Exp Pharmacol Physiol. 2013;40(10):683–8.

  60. Vaughn SE, Strawn JR, Poweleit EA, Sarangdhar M, Ramsey LB. The impact of marijuana on antidepressant treatment in adolescents: clinical and pharmacologic considerations. J Pers Med. 2021;11:615.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zendulka O, Dovrtělová G, Nosková K, Turjap M, Šulcová A, Hanuš L, et al. Cannabinoids and cytochrome P450 interactions. CDM. 2016;17:206–26.

    Article  CAS  Google Scholar 

  62. Saiz-Rodríguez M, Belmonte C, Román M, Ochoa D, Koller D, Talegón M, et al. Effect of polymorphisms on the pharmacokinetics, pharmacodynamics and safety of sertraline in healthy volunteers. Basic Clin Pharmacol Toxicol. 2018;122:501–11.

    Article  PubMed  Google Scholar 

  63. Hanan NJ, Paul ME, Huo Y, Kapetanovic S, Smith E, Siberry G, et al. Sertraline pharmacokinetics in hiv-infected and uninfected children, adolescents, and young adults. Front Pediatr. 2019;7:16.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ishizawa Y, Yasui-Furukori N, Takahata T, Sasaki M, Tateishi T. The effect of aging on the relationship between the cytochrome P450 2C19 genotype and omeprazole pharmacokinetics. Clin Pharmacokinet. 2005;44:1179–89.

    Article  CAS  PubMed  Google Scholar 

  65. Li CH, Pollock BG, Lyketsos CG, Vaidya V, Drye LT, Kirshner M, et al. Population pharmacokinetic modeling of sertraline treatment in patients with Alzheimer disease: the DIADS-2 Study. J Clin Pharmacol. 2013;53:234–9.

    Article  CAS  PubMed  Google Scholar 

  66. Yuce-Artun N, Baskak B, Ozel-Kizil ET, Ozdemir H, Uckun Z, Devrimci-Ozguven H, et al. Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients. Int J Clin Pharm. 2016;38:388–94.

    Article  CAS  PubMed  Google Scholar 

  67. Poweleit EA, Aldrich SL, Martin LJ, Hahn D, Strawn JR, Ramsey LB. Pharmacogenetics of sertraline tolerability and response in pediatric anxiety and depressive disorders. J Child Adolesc Psychopharmacol. 2019;29:348–61.

    Article  CAS  PubMed  Google Scholar 

  68. Gjestad C, Westin AA, Skogvoll E, Spigset O. Effect of proton pump inhibitors on the serum concentrations of the selective serotonin reuptake inhibitors citalopram, escitalopram, and sertraline. Ther Drug Monit. 2015;37:90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alhadab AA, Brundage RC. Population pharmacokinetics of sertraline in healthy subjects: a model-based meta-analysis. AAPS J. 2020;22:73.

    Article  CAS  PubMed  Google Scholar 

  70. Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56:1246–51.

    Article  CAS  PubMed  Google Scholar 

  71. Aldrich SL, Poweleit EA, Prows CA, Martin LJ, Strawn JR, Ramsey LB. Influence of CYP2C19 metabolizer status on escitalopram/citalopram tolerability and response in youth with anxiety and depressive disorders. Front Pharmacol. 2019;10:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eichentopf L, Hiemke C, Conca A, Engelmann J, Gerlach M, Havemann-Reinecke U, et al. Systematic review and meta-analysis on the therapeutic reference range for escitalopram: blood concentrations, clinical effects and serotonin transporter occupancy. Front Psychiatry. 2022;13: 972141.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Strawn JR, Dobson ET, Mills JA, Cornwall GJ, Sakolsky D, Birmaher B, et al. Placebo response in pediatric anxiety disorders: results from the child/adolescent anxiety multimodal study. J Child Adolesc Psychopharmacol. 2017;27:501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11:558–69.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Beaulieu-Jones BK, Finlayson SG, Yuan W, Altman RB, Kohane IS, Prasad V, et al. Examining the use of real-world evidence in the regulatory process. Clin Pharmacol Ther. 2020;107:843–52.

    Article  PubMed  Google Scholar 

  76. Walkup JT, Albano AM, Piacentini J, Birmaher B, Compton SN, Sherrill JT, et al. Cognitive behavioral therapy, sertraline, or a combination in childhood anxiety. N Engl J Med. 2008;359:2753–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu W, Li G, Wang C, Wang X, Yang L. Efficacy of sertraline combined with cognitive behavioral therapy for adolescent depression: a systematic review and meta-analysis. Comput Math Methods Med. 2021;2021:5309588.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Strawn JR, Mills JA, Suresh V, Peris TS, Walkup JT, Croarkin PE. Combining selective serotonin reuptake inhibitors and cognitive behavioral therapy in youth with depression and anxiety. J Affect Disord. 2022;298:292–300.

    Article  CAS  PubMed  Google Scholar 

  79. Strawn JR, Welge JA, Wehry AM, Keeshin BR, Rynn MA. Efficacy and tolerability of antidepressants in pediatric anxiety disorders: a systematic review and meta-analysis. Depress Anxiety. 2015;32:149–57.

    Article  CAS  PubMed  Google Scholar 

  80. Stancil SL, Tumberger J, Strawn JR. Target to treatment: a charge to develop biomarkers of response and tolerability in child and adolescent psychiatry. Clin Transl Sci. 2022;15:816–23.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry. 2010;15:473–500.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Josh Courter for helping set up the Vigilanz Alert System, the CCHMC Clinical Laboratories for sample collection, and Ashley Sarbell, Jada Bouyer, and Kynnedi Williams for data collection. We acknowledge the Center for Clinical & Translational Science and Training (CCTST) at the University of Cincinnati supports REDCap and is funded by the National Institutes of Health (NIH) Clinical and Translational Science Award (CTSA) program, grant UL1TR001425. The CTSA program is led by the NIH's National Center for Advancing Translational Sciences (NCATS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. Ramsey.

Ethics declarations

Disclosures/Conflicts of Interest

LBR has received research support from BTG International. JRS has received research support from Abbvie, the National Institutes of Health, PCORI, the Yung Family Foundation, and receives material support from Myriad. He receives royalties from UpToDate and Cambridge and has consulted with Cerevel, Otsuka, and Intracellular Therapeutics. All other authors declared no competing interests for this work.

Funding Information

Funding from the Center for Pediatric Genomics at Cincinnati Children’s Hospital Medical Center supported this project. EAP is supported by the National Institute of Mental Health of the National Institutes of Health under award number F31MH132265. ZLT was supported by the National Institute of Child Health and Development T32 Cincinnati Pediatric Clinical Pharmacology Training Program (T32HD069054). ZD is supported by R35GM145383 from NIGMS. JRS, EAP, and LBR are supported by NICHD (R01HD099775).

Data Availability

Data for this study may be available upon reasonable request from the corresponding author.

Ethics Approval

This study was approved by the Institutional Review Board at Cincinnati Children’s Hospital Medical Center and was determined to be exempt in accordance with applicable regulations and institutional policy.

Consent to Participate

A waiver of informed consent was granted by the IRB at Cincinnati Children’s Hospital Medical Center.

Consent for Publication

Not applicable.

Code Availability

The code generated for the analysis may be available upon reasonable request from the corresponding author.

Author Contributions

All authors contributed to the study conception and design. Data collection was performed by EAP, SEV, and ZD. Data analysis was performed by EAP, ZLT, and TM. The first draft of the manuscript was written by EAP and all authors edited and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 530 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poweleit, E.A., Taylor, Z.L., Mizuno, T. et al. Escitalopram and Sertraline Population Pharmacokinetic Analysis in Pediatric Patients. Clin Pharmacokinet 62, 1621–1637 (2023). https://doi.org/10.1007/s40262-023-01294-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01294-8

Navigation