Skip to main content
Log in

Population Pharmacokinetics of Total Rabbit Anti-thymocyte Globulin in Non-obese Adult Patients Undergoing Hematopoietic Cell Transplantation for Hematologic Malignancy

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Rabbit anti-thymocyte globulin (rATG), a therapeutic polyclonal antibody against human T cells, is commonly used in conditioning therapy prior to allogeneic hematopoietic cell transplantation (HCT). Previous studies successfully developed an individualized rATG dosing regimen based on “active” rATG population PK (popPK) analysis, while “total” rATG can be a more logistically favorable alternative for early HCT outcomes. We conducted a novel popPK analysis of total rATG.

Methods

Total rATG concentration was measured in adult human-leukocyte antigen (HLA) mismatched HCT patients who received a low-dose rATG regimen (total 2.5–3 mg/kg) within 3 days prior to HCT. PopPK modeling and simulation was performed using nonlinear mixed effect modeling approach.

Results

A total of 504 rATG concentrations were available from 105 non-obese patients with hematologic malignancy (median age 47 years) treated in Japan. The majority had acute leukemia or malignant lymphoma (94%). Total rATG PK was described by a two-compartment linear model. Influential covariate relations include ideal body weight [positively on both clearance (CL) and central volume of distribution], baseline serum albumin (negatively on CL), CD4+ T cell dose (positively on CL), and baseline serum IgG (positively on CL). Simulated covariate effects predicted that early total rATG exposures were affected by ideal body weight.

Conclusions

This novel popPK model described the PK of total rATG in the adult HCT patients who received a low-dose rATG conditioning regimen. This model can be used for model-informed precision dosing in the settings with minimal baseline rATG targets (T cells), and early clinical outcomes are of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonifazi F, Rubio MT, Bacigalupo A, Boelens JJ, Finke J, Greinix H, et al. Rabbit ATG/ATLG in preventing graft-versus-host disease after allogeneic stem cell transplantation: consensus-based recommendations by an international expert panel. Bone Marrow Transplant. 2020;55(6):1093–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arai Y, Jo T, Matsui H, Kondo T, Takaori-Kondo A. Efficacy of antithymocyte globulin for allogeneic hematopoietic cell transplantation: a systematic review and meta-analysis. Leuk Lymphoma. 2017;58(8):1840–8.

    Article  CAS  PubMed  Google Scholar 

  3. Meesters-Ensing JI, Admiraal R, Ebskamp L, Lacna A, Boelens JJ, Lindemans CA, et al. Therapeutic drug monitoring of anti-thymocyte globulin in allogeneic stem cell transplantation: proof of concept. Front Pharmacol. 2022;13:828094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Regan JF, Lyonnais C, Campbell K, Smith LV, Buelow R, Group USTM-CS. Total and active Thymoglobulin levels: effects of dose and sensitization on serum concentrations. Transpl Immunol. 2001;9(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  5. Call SK, Kasow KA, Barfield R, Madden R, Leung W, Horwitz E, et al. Total and active rabbit antithymocyte globulin (rATG;Thymoglobulin) pharmacokinetics in pediatric patients undergoing unrelated donor bone marrow transplantation. Biol Blood Marrow Transplant. 2009;15(2):274–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Waller EK, Langston AA, Lonial S, Cherry J, Somani J, Allen AJ, et al. Pharmacokinetics and pharmacodynamics of anti-thymocyte globulin in recipients of partially HLA-matched blood hematopoietic progenitor cell transplantation. Biol Blood Marrow Transplant. 2003;9(7):460–71.

    Article  CAS  PubMed  Google Scholar 

  7. Admiraal R, Nierkens S, de Witte MA, Petersen EJ, Fleurke GJ, Verrest L, et al. Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: a multicentre, retrospective, pharmacodynamic cohort analysis. Lancet Haematol. 2017;4(4):e183–91.

    Article  PubMed  Google Scholar 

  8. Admiraal R, van Kesteren C, Jol-van der Zijde CM, van Tol MJ, Bartelink IH, Bredius RG, et al. Population pharmacokinetic modeling of Thymoglobulin(®) in children receiving allogeneic-hematopoietic cell transplantation: towards improved survival through individualized dosing. Clin Pharmacokinet. 2015;54(4):435–46.

    Article  CAS  PubMed  Google Scholar 

  9. Admiraal R, Nierkens S, Bredius R, Bierings M, van Vliet I, Yurda ML, et al. Prospective open-label phase II trial of individualized anti-thymocyte globulin for improved T-cell reconstitution after pediatric allogeneic hematopoietic cell transplantation: the parachute-study. Biol Blood Marrow Transplant. 2020;26(3):S33–4.

    Article  Google Scholar 

  10. Admiraal R, Nierkens S, Bierings MB, Bredius RGM, van Vliet I, Jiang Y, et al. Individualised dosing of anti-thymocyte globulin in paediatric unrelated allogeneic haematopoietic stem-cell transplantation (PARACHUTE): a single-arm, phase 2 clinical trial. Lancet Haematol. 2022;9(2):e111–20.

    Article  CAS  PubMed  Google Scholar 

  11. Admiraal R, van Kesteren C, Jol-van der Zijde CM, Lankester AC, Bierings MB, Egberts TC, et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015;2(5):e194-203.

    Article  PubMed  Google Scholar 

  12. Teramoto M, Maruyama S, Tamaki H, Kaida K, Mayumi A, Fukunaga K, et al. Association between the pharmacokinetics of rabbit anti-thymocyte globulin and acute graft-versus-host disease in patients who received haploidentical hematopoietic stem cell transplantation. Int J Hematol. 2022;116(2):248–57.

    Article  CAS  PubMed  Google Scholar 

  13. van der Stoep M, Oostenbrink LVE, Bredius RGM, Moes D, Guchelaar HJ, Zwaveling J, et al. Therapeutic drug monitoring of conditioning agents in pediatric allogeneic stem cell transplantation; where do we stand? Front Pharmacol. 2022;13: 826004.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ikegame K, Yoshida T, Yoshihara S, Daimon T, Shimizu H, Maeda Y, et al. Unmanipulated haploidentical reduced-intensity stem cell transplantation using fludarabine, busulfan, low-dose antithymocyte globulin, and steroids for patients in non-complete remission or at high risk of relapse: a prospective multicenter phase I/II study in Japan. Biol Blood Marrow Transplant. 2015;21(8):1495–505.

    Article  CAS  PubMed  Google Scholar 

  15. Devine BJ. Gentamicin therapy. Drug Intell Clin Pharm. 1974;8(11):650–5.

    Google Scholar 

  16. Dosne AG, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn. 2016;43(6):583–96.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jonsson EN, Karlsson MO. Automated covariate model building within NONMEM. Pharm Res. 1998;15(9):1463–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  CAS  PubMed  Google Scholar 

  21. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59.

    Article  CAS  PubMed  Google Scholar 

  22. Bhoopalan SV, Cross SJ, Panetta JC, Triplett BM. Pharmacokinetics of alemtuzumab in pediatric patients undergoing ex vivo T-cell-depleted haploidentical hematopoietic cell transplantation. Cancer Chemother Pharmacol. 2020;86(6):711–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Admiraal R, Jol-van der Zijde CM, Furtado Silva JM, Knibbe CAJ, Lankester AC, Boelens JJ, et al. Population pharmacokinetics of alemtuzumab (Campath) in pediatric hematopoietic cell transplantation: towards individualized dosing to improve outcome. Clin Pharmacokinet. 2019;58(12):1609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin Dial. 2004;17(6):432–7.

    Article  PubMed  Google Scholar 

  25. Jin F, Balthasar JP. Mechanisms of intravenous immunoglobulin action in immune thrombocytopenic purpura. Hum Immunol. 2005;66(4):403–10.

    Article  CAS  PubMed  Google Scholar 

  26. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49(4):673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogonek J, KraljJuric M, Ghimire S, Varanasi PR, Holler E, Greinix H, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:507.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zeiser R, Blazar BR. Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Remberger M, Sundberg B. Rabbit-immunoglobulin G levels in patients receiving Thymoglobulin as part of conditioning before unrelated donor stem cell transplantation. Haematologica. 2005;90(7):931–8.

    CAS  PubMed  Google Scholar 

  30. Myers AL, Kawedia JD, Champlin RE, Kramer MA, Nieto Y, Ghose R, et al. Clarifying busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: a comprehensive review. Expert Opin Drug Metab Toxicol. 2017;13(9):901–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Palmer J, McCune JS, Perales MA, Marks D, Bubalo J, Mohty M, et al. Personalizing busulfan-based conditioning: considerations from the American Society for blood and marrow transplantation practice guidelines committee. Biol Blood Marrow Transplant. 2016;22(11):1915–25.

    Article  CAS  PubMed  Google Scholar 

  32. Arnold DE, Emoto C, Fukuda T, Dong M, Vinks AA, Lane A, et al. A prospective pilot study of a novel alemtuzumab target concentration intervention strategy. Bone Marrow Transplant. 2021;56(12):3029–31.

    Article  CAS  PubMed  Google Scholar 

  33. Marsh RA, Lane A, Mehta PA, Neumeier L, Jodele S, Davies SM, et al. Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT. Blood. 2016;127(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  34. McCune JS, Batchelder A, Deeg HJ, Gooley T, Cole S, Phillips B, et al. Cyclophosphamide following targeted oral busulfan as conditioning for hematopoietic cell transplantation: pharmacokinetics, liver toxicity, and mortality. Biol Blood Marrow Transplant. 2007;13(7):853–62.

    Article  CAS  PubMed  Google Scholar 

  35. McDonald GB, Slattery JT, Bouvier ME, Ren S, Batchelder AL, Kalhorn TF, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood. 2003;101(5):2043–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all physicians, nurses, pharmacists, and other medical staff for their care of the patients in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuto Takahashi.

Ethics declarations

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request after an approval from the study committee.

Author contributions

Conceptualization: TT, MT; methodology, computational analysis, writing—original draft preparation: TT; bioanalysis: KM; review of computational analysis: MJ; clinical sample acquisition: MT, HT, KI, SY, KK; data curation: MT; writing—review and editing: all authors.

Funding

Not applicable.

Conflict of interest

The authors have no competing interests associated with this study.

Ethics approval

The present study was approved by the institutional review board at the Hyogo Medical University

Consent to participate

Patients and/or their legal guardians provided written consent to participate in the present study.

Consent for publication

Patients and/or their legal guardians provided written consent for publication of the present study.

Code availability

The code generated during the current study is available from the corresponding author on reasonable request after approval from the study committee.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22074 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T., Teramoto, M., Matsumoto, K. et al. Population Pharmacokinetics of Total Rabbit Anti-thymocyte Globulin in Non-obese Adult Patients Undergoing Hematopoietic Cell Transplantation for Hematologic Malignancy. Clin Pharmacokinet 62, 1081–1091 (2023). https://doi.org/10.1007/s40262-023-01252-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01252-4

Navigation