Skip to main content
Log in

Unlocking the Power of Complement-Dependent Cytotoxicity: Engineering Strategies for the Development of Potent Therapeutic Antibodies for Cancer Treatments

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The complement system is a crucial part of the innate immune response, providing defense against invading pathogens and cancer cells. Recently, it has become evident that the complement system plays a significant role in anticancer activities, particularly through complement-dependent cytotoxicity (CDC), alongside antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP). With the discovery of new roles for serum complement molecules in the human immune system, various approaches are being pursued to develop CDC-enhanced antibody therapeutics. In this review, we focus on successful antibody engineering strategies for enhancing CDC, analyzing the lessons learned and the limitations of each approach. Furthermore, we outline potential pathways for the development of antibody therapeutics specifically aimed at enhancing CDC for superior therapeutic efficacy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walport MJ. Complement. N Engl J Med. 2001;344(14):1058–66. https://doi.org/10.1056/NEJM200104053441406.

    Article  CAS  PubMed  Google Scholar 

  2. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18(1):46–61. https://doi.org/10.1038/nri.2017.106.

    Article  CAS  PubMed  Google Scholar 

  3. Lu Y, Zhao Q, Liao J-Y, Song E, Xia Q, Pan J, et al. Complement signals determine opposite effects of b cells in chemotherapy-induced immunity. Cell. 2020;180(6):1081-97.e24. https://doi.org/10.1016/j.cell.2020.02.015.

    Article  CAS  PubMed  Google Scholar 

  4. Afshar-Kharghan V. The role of the complement system in cancer. J Clin Investig. 2017;127(3):780–9. https://doi.org/10.1172/JCI90962.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med. 2019;51(11):1–9. https://doi.org/10.1038/s12276-019-0345-9.

    Article  CAS  PubMed  Google Scholar 

  6. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, et al. Complement activation determines the therapeutic activity of rituximab in vivo 1. J Immunol. 2003;171(3):1581–7. https://doi.org/10.4049/jimmunol.171.3.1581.

    Article  PubMed  Google Scholar 

  7. Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JGJ, Parren PWHI, et al. Binding of Submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX1. J Immunol. 2009;183(1):749–58. https://doi.org/10.4049/jimmunol.0900632.

    Article  CAS  PubMed  Google Scholar 

  8. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6(4):443–6. https://doi.org/10.1038/74704.

    Article  CAS  PubMed  Google Scholar 

  9. Weng WK, Levy R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood. 2001;98(5):1352–7. https://doi.org/10.1182/blood.v98.5.1352.

    Article  CAS  PubMed  Google Scholar 

  10. Zent CS, Secreto CR, LaPlant BR, Bone ND, Call TG, Shanafelt TD, et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early–intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res. 2008;32(12):1849–56. https://doi.org/10.1016/j.leukres.2008.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Weers M, Tai Y-T, van der Veer MS, Bakker JM, Vink T, Jacobs DCH, et al. Daratumumab, a novel therapeutic human cd38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8. https://doi.org/10.4049/jimmunol.1003032.

    Article  CAS  PubMed  Google Scholar 

  12. Freeman CL, Sehn LH. A tale of two antibodies: obinutuzumab versus rituximab. Br J Haematol. 2018;182(1):29–45. https://doi.org/10.1111/bjh.15232.

    Article  PubMed  Google Scholar 

  13. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. https://doi.org/10.1038/ni.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee C-H, Romain G, Yan W, Watanabe M, Charab W, Todorova B, et al. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol. 2017;18(8):889–98. https://doi.org/10.1038/ni.3770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dunkelberger JR, Song W-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. https://doi.org/10.1038/cr.2009.139.

    Article  CAS  PubMed  Google Scholar 

  16. Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs. 2022;14(1):2014296. https://doi.org/10.1080/19420862.2021.2014296.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Idusogie EE, Presta LG, Gazzano-Santoro H, Totpal K, Wong PY, Ultsch M, et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J Immunol. 2000;164(8):4178–84. https://doi.org/10.4049/jimmunol.164.8.4178.

    Article  CAS  PubMed  Google Scholar 

  18. Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M, et al. Engineered antibodies with increased activity to recruit complement. J Immunol. 2001;166(4):2571–5. https://doi.org/10.4049/jimmunol.166.4.2571.

    Article  CAS  PubMed  Google Scholar 

  19. Moore GL, Chen H, Karki S, Lazar GA. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs. 2010;2(2):181–9. https://doi.org/10.4161/mabs.2.2.11158.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ugurlar D, Howes SC, de Kreuk B-J, Koning RI, de Jong RN, Beurskens FJ, et al. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science. 2018;359(6377):794–7. https://doi.org/10.1126/science.aao4988.

    Article  CAS  PubMed  Google Scholar 

  21. Caaveiro JMM, Kiyoshi M, Tsumoto K. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design. Immunol Rev. 2015;268(1):201–21. https://doi.org/10.1111/imr.12365.

    Article  CAS  PubMed  Google Scholar 

  22. Hughes-Jones NC, Gardner B. Reaction between the isolated globular sub-units of the complement component Clq and IgG-complexes. Mol Immunol. 1979;16(9):697–701. https://doi.org/10.1016/0161-5890(79)90010-5.

    Article  CAS  PubMed  Google Scholar 

  23. Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343(6176):1260–3. https://doi.org/10.1126/science.1248943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Jong RN, Beurskens FJ, Verploegen S, Strumane K, van Kampen MD, Voorhorst M, et al. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLOS Biol. 2016;14(1): e1002344. https://doi.org/10.1371/journal.pbio.1002344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simone CO, JvdH H, Margaret AL, Erika MC, Jillian CT, Clive SZ, et al. CD20 and CD37 antibodies synergize to activate complement by Fc-mediated clustering. Haematologica. 2019;104(9):1841–52. https://doi.org/10.3324/haematol.2018.207266.

    Article  CAS  Google Scholar 

  26. Oostindie SC, van der Horst HJ, Kil LP, Strumane K, Overdijk MB, van den Brink EN, et al. DuoHexaBody-CD37®, a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020;10(3):30. https://doi.org/10.1038/s41408-020-0292-7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sopp JM, Peters SJ, Rowley TF, Oldham RJ, James S, Mockridge I, et al. On-target IgG hexamerisation driven by a C-terminal IgM tail-piece fusion variant confers augmented complement activation. Commun Biol. 2021;4(1):1031. https://doi.org/10.1038/s42003-021-02513-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Norderhaug L, Brekke OH, Bremnes B, Sandin R, Aase A, Michaelsen TE, et al. Chimeric mouse human IgG3 antibodies with an IgG4-like hinge region induce complement-mediated lysis more efficiently than IgG3 with normal hinge. Eur J Immunol. 1991;21(10):2379–84. https://doi.org/10.1002/eji.1830211013.

    Article  CAS  PubMed  Google Scholar 

  30. Natsume A, In M, Takamura H, Nakagawa T, Shimizu Y, Kitajima K, et al. Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Can Res. 2008;68(10):3863–72. https://doi.org/10.1158/0008-5472.Can-07-6297.

    Article  CAS  Google Scholar 

  31. Natsume A, Shimizu-Yokoyama Y, Satoh M, Shitara K, Niwa R. Engineered anti-CD20 antibodies with enhanced complement-activating capacity mediate potent anti-lymphoma activity. Cancer Sci. 2009;100(12):2411–8. https://doi.org/10.1111/j.1349-7006.2009.01327.x.

    Article  CAS  PubMed  Google Scholar 

  32. Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, et al. Decoding the human immunoglobulin g-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front Immunol. 2017;8:877. https://doi.org/10.3389/fimmu.2017.00877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peschke B, Keller CW, Weber P, Quast I, Lünemann JD. Fc-galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front Immunol. 2017;8:646. https://doi.org/10.3389/fimmu.2017.00646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Osch TLJ, Nouta J, Derksen NIL, van Mierlo G, van der Schoot CE, Wuhrer M, et al. Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation. J Immunol. 2021;207(6):1545–54. https://doi.org/10.4049/jimmunol.2100399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fishelson Z, Kirschfink M. Complement C5b–9 and cancer: mechanisms of cell damage, cancer counteractions, and approaches for intervention. Front Immunol. 2019;10:2. https://doi.org/10.3389/fimmu.2019.00752.

    Article  CAS  Google Scholar 

  36. Zhang R, Liu Q, Liao Q, Zhao Y. CD59: a promising target for tumor immunotherapy. Future Oncol. 2018;14(8):781–91. https://doi.org/10.2217/fon-2017-0498.

    Article  CAS  PubMed  Google Scholar 

  37. Barth MJ, Mavis C, Czuczman MS, Hernandez-Ilizaliturri FJ. Ofatumumab exhibits enhanced in vitro and in vivo activity compared to rituximab in preclinical models of mantle cell lymphoma. Clin Cancer Res. 2015;21(19):4391–7. https://doi.org/10.1158/1078-0432.Ccr-15-0056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kesselring R, Thiel A, Pries R, Fichtner-Feigl S, Brunner S, Seidel P, et al. The complement receptors CD46, CD55 and CD59 are regulated by the tumour microenvironment of head and neck cancer to facilitate escape of complement attack. Eur J Cancer. 2014;50(12):2152–61. https://doi.org/10.1016/j.ejca.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  39. Gelderman KA, Blok VT, Fleuren GJ, Gorter A. The inhibitory effect of CD46, CD55, and CD59 on complement activation after immunotherapeutic treatment of cervical carcinoma cells with monoclonal antibodies or bispecific monoclonal antibodies. Lab Invest. 2002;82(4):483–93. https://doi.org/10.1038/labinvest.3780441.

    Article  CAS  PubMed  Google Scholar 

  40. Gelderman KA, Lam S, Sier CF, Gorter A. Cross-linking tumor cells with effector cells via CD55 with a bispecific mAb induces β-glucan-dependent CR3-dependent cellular cytotoxicity. Eur J Immunol. 2006;36(4):977–84. https://doi.org/10.1002/eji.200535653.

    Article  CAS  PubMed  Google Scholar 

  41. Macor P, Secco E, Mezzaroba N, Zorzet S, Durigutto P, Gaiotto T, et al. Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice. Leukemia. 2015;29(2):406–14. https://doi.org/10.1038/leu.2014.185.

    Article  CAS  PubMed  Google Scholar 

  42. Mamidi S, Höne S, Teufel C, Sellner L, Zenz T, Kirschfink M. Neutralization of membrane complement regulators improves complement-dependent effector functions of therapeutic anticancer antibodies targeting leukemic cells. Oncoimmunology. 2015;4(3): e979688. https://doi.org/10.4161/2162402x.2014.979688.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nijhof IS, Casneuf T, van Velzen J, van Kessel B, Axel AE, Syed K, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128(7):959–70. https://doi.org/10.1182/blood-2016-03-703439.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Yang YJ, Wang Z, Liao J, Liu M, Zhong XR, et al. CD55 and CD59 expression protects HER2-overexpressing breast cancer cells from trastuzumab-induced complement-dependent cytotoxicity. Oncol Lett. 2017;14(3):2961–9. https://doi.org/10.3892/ol.2017.6555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar A, Planchais C, Fronzes R, Mouquet H, Reyes N. Binding mechanisms of therapeutic antibodies to human CD20. Science. 2020;369(6505):793–9. https://doi.org/10.1126/science.abb8008.

    Article  CAS  PubMed  Google Scholar 

  46. Wang B, Yang C, Jin X, Du Q, Wu H, Dall’Acqua W, et al. Regulation of antibody-mediated complement-dependent cytotoxicity by modulating the intrinsic affinity and binding valency of IgG for target antigen. MAbs. 2020;12(1):1690959. https://doi.org/10.1080/19420862.2019.1690959.

    Article  CAS  PubMed  Google Scholar 

  47. Wang G, de Jong RN, van den Bremer ET, Beurskens FJ, Labrijn AF, Ugurlar D, et al. Molecular basis of assembly and activation of complement component C1 in complex with immunoglobulin G1 and antigen. Mol Cell. 2016;63(1):135–45. https://doi.org/10.1016/j.molcel.2016.05.016.

    Article  CAS  PubMed  Google Scholar 

  48. Mamidi S, Cinci M, Hasmann M, Fehring V, Kirschfink M. Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab. Mol Oncol. 2013;7(3):580–94. https://doi.org/10.1016/j.molonc.2013.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kontermann RE, Wing MG, Winter G. Complement recruitment using bispecific diabodies. Nat Biotechnol. 1997;15(7):629–31. https://doi.org/10.1038/nbt0797-629.

    Article  CAS  PubMed  Google Scholar 

  50. Cruz JW, Damko E, Modi B, Tu N, Meagher K, Voronina V, et al. A novel bispecific antibody platform to direct complement activity for efficient lysis of target cells. Sci Rep. 2019;9(1):12031. https://doi.org/10.1038/s41598-019-48461-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pedersen ML, Pedersen DV, Winkler MBL, Olesen HG, Søgaard OS, Ostergaard L, et al. Nanobody-mediated complement activation to kill HIV-infected cells. EMBO Mol Med. 2023;15(4): e16422. https://doi.org/10.15252/emmm.202216422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wirt T, Rosskopf S, Rösner T, Eichholz KM, Kahrs A, Lutz S, et al. An Fc double-engineered CD20 antibody with enhanced ability to trigger complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity. Transfus Med Hemother. 2017;44(5):292–300. https://doi.org/10.1159/000479978.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gehlert CL, Rahmati P, Boje AS, Winterberg D, Krohn S, Theocharis T, et al. Dual Fc optimization to increase the cytotoxic activity of a CD19-targeting antibody. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.957874.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jebamani P, Sokalingam S, Sriramulu DK, Jung ST, Lee S-G. Assessment of computational modeling of Fc-Fc receptor binding through protein-protein docking tool. Biotechnol Bioprocess Eng. 2020;25(5):734–41. https://doi.org/10.1007/s12257-020-0050-5.

    Article  CAS  Google Scholar 

  55. Jebamani P, Sriramulu DK, Jung ST, Lee S-G. Structural study on the impact of S239D/I332E mutations in the binding of Fc and FcγRIIIa. Biotechnol Bioprocess Eng. 2021;26(6):985–92. https://doi.org/10.1007/s12257-021-0024-2.

    Article  CAS  Google Scholar 

  56. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci. 2006;103(11):4005–10. https://doi.org/10.1073/pnas.0508123103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Revel M, Daugan MV, Sautés-Fridman C, Fridman WH, Roumenina LT. Complement system: promoter or suppressor of cancer progression? Antibodies. 2020;9(4):57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Introna M, Golay J. Complement in antibody therapy: friend or foe? Blood. 2009;114(26):5247–8. https://doi.org/10.1182/blood-2009-10-249532.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, Zhang H, He YW. The complement receptors C3aR and C5aR are a new class of immune checkpoint receptor in cancer immunotherapy. Front Immunol. 2019;10:1574. https://doi.org/10.3389/fimmu.2019.01574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023;15(1):2153410. https://doi.org/10.1080/19420862.2022.2153410.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Taek Jung.

Ethics declarations

Funding

This research was supported by the Korea Drug Development Fund funded by the Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN21C0103, Republic of Korea). We are also grateful for support from grants from the Basic Science Research Program (RS-2023-00245059 and 2022R1A4A2000827) through the National Research Foundation of Korea funded by the Ministry of Science and ICT.

Conflicts of interest

Wonju Lee, Sang Min Lee, and Sang Taek Jung declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions.

All authors reviewed and commented on the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Lee, S.M. & Jung, S.T. Unlocking the Power of Complement-Dependent Cytotoxicity: Engineering Strategies for the Development of Potent Therapeutic Antibodies for Cancer Treatments. BioDrugs 37, 637–648 (2023). https://doi.org/10.1007/s40259-023-00618-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-023-00618-1

Navigation