Skip to main content
Log in

The Skin and Gut Microbiome in Hidradenitis Suppurativa: Current Understanding and Future Considerations for Research and Treatment

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Hidradenitis suppurativa (HS) is a chronic, inflammatory skin disease comprising painful abscesses, deep nodules, fistulas, and scarring predominantly in the axilla and groin. Bacterial colonization of HS lesions has been well characterized and may lead to chronic infection of lesions. While disease pathogenesis of HS is not fully understood, there is increasing evidence that microbial dysbiosis may be occurring in numerous locations, including the skin and gut. The skin–gut microbiome has been proposed as a mechanism by which inflammatory skin disorders, including HS, can be exacerbated. This is evidenced by HS patients being significantly more likely to develop inflammatory bowel disease as well as the well documented cutaneous manifestations in inflammatory bowel disease. In this review, we discuss the current literature regarding HS skin and gut microbiome research. Furthermore, we discuss further considerations for microbiome research in HS, including the potential role of bacterial metabolites in disease progression and future therapeutic avenues like probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goldburg SR, Strober BE, Payette MJ. Hidradenitis suppurativa: epidemiology, clinical presentation, and pathogenesis. J Am Acad Dermatol. 2020;82:1045–58.

    Article  CAS  PubMed  Google Scholar 

  2. Delany E, Gormley G, Hughes R, McCarthy S, Kirthi S, Markham T, et al. A cross-sectional epidemiological study of hidradenitis suppurativa in an Irish population (SHIP). J Eur Acad Dermatol Venereol. 2018;32:467–73.

    Article  CAS  PubMed  Google Scholar 

  3. Saunte DML, Jemec GBE. Hidradenitis suppurativa: advances in diagnosis and treatment. JAMA. 2017;318:2019–32.

    Article  PubMed  Google Scholar 

  4. Lowe MM, Naik HB, Clancy S, Pauli M, Smith KM, Bi Y, et al. Immunopathogenesis of hidradenitis suppurativa and response to anti-TNF-α therapy. JCI insight. 2020;5: e139932.

    Article  PubMed Central  Google Scholar 

  5. Witte-Händel E, Wolk K, Tsaousi A, Irmer ML, Mößner R, Shomroni O, et al. The IL-1 pathway is hyperactive in hidradenitis suppurativa and contributes to skin infiltration and destruction. J Invest Dermatol. 2019;139:1294–305.

    Article  PubMed  Google Scholar 

  6. Scheinfeld N, Sundaram M, Teixeira H, Gu Y, Okun M. Reduction in pain scores and improvement in depressive symptoms in patients with hidradenitis suppurativa treated with adalimumab in a phase 2, randomized, placebo-controlled trial. Dermatol Online J. 2016;22:13030/qt38x5922j.

  7. Kimball AB, Kerdel F, Adams D, Mrowietz U, Gelfand JM, Gniadecki R, et al. Adalimumab for the treatment of moderate to severe hidradenitis suppurativa: a parallel randomized trial. Ann Intern Med. 2012;157:846–55.

    Article  PubMed  Google Scholar 

  8. Blok JL, Li K, Brodmerkel C, Horvátovich P, Jonkman MF, Horváth B. Ustekinumab in hidradenitis suppurativa: Clinical results and a search for potential biomarkers in serum. Br J Dermatol. 2016;174:839–46.

    Article  CAS  PubMed  Google Scholar 

  9. Tzanetakou V, Kanni T, Giatrakou S, Katoulis A, Papadavid E, Netea MG, et al. Safety and efficacy of anakinra in severe hidradenitis suppurativa a randomized clinical trial. JAMA Dermatol. 2016;152:52–9.

    Article  PubMed  Google Scholar 

  10. Alikhan A, Sayed C, Alavi A, Alhusayen R, Brassard A, Burkhart C, et al. North American clinical management guidelines for hidradenitis suppurativa: a publication from the United States and Canadian Hidradenitis Suppurativa Foundations. J Am Acad Dermatol. 2019;81:91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haferland I, Wallenwein CM, Ickelsheimer T, Diehl S, Wacker MG, Schiffmann S, et al. Mechanism of anti-inflammatory effects of rifampicin in an ex vivo culture system of hidradenitis suppurativa. Exp Dermatol. 2022;31:1005–13.

    Article  CAS  PubMed  Google Scholar 

  12. Del Rosso JQ, Schmidt NF. A review of the anti-inflammatory properties of clindamycin in the treatment of acne vulgaris. Cutis. 2010;85:15–24.

    PubMed  Google Scholar 

  13. Matusiak Ł, Szczęch J, Bieniek A, Nowicka-Suszko D, Szepietowski JC. Increased interleukin (IL)-17 serum levels in patients with hidradenitis suppurativa: Implications for treatment with anti-IL-17 agents. J Am Acad Dermatol. 2017;76:670–5.

    Article  CAS  PubMed  Google Scholar 

  14. Akdogan N, Dogan S, Incel-Uysal P, Karabulut E, Topcuoglu C, Yalcin B, et al. Serum amyloid A and C-reactive protein levels and erythrocyte sedimentation rate are important indicators in hidradenitis suppurativa. Arch Dermatol Res. 2020;312:255–62.

    Article  CAS  PubMed  Google Scholar 

  15. Rashid M-U, Zaura E, Buijs MJ, Keijser BJF, Crielaard W, Nord CE, et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin Infect Dis. 2015;60(Suppl 2):S77-84.

    Article  CAS  PubMed  Google Scholar 

  16. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science (80-). 2009;324:1190–2.

    Article  CAS  Google Scholar 

  17. Paus R, Nickoloff BJ, Ito T. A “hairy” privilege. Trends Immunol. 2005;26:32–40.

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez RS, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, et al. Memory regulatory T cells reside in human skin. J Clin Invest. 2014;124:1027–36.

    Article  CAS  Google Scholar 

  19. Scharschmidt TC, Vasquez KS, Pauli ML, Leitner EG, Chu K, Truong HA, et al. Commensal microbes and hair follicle morphogenesis coordinately drive treg migration into neonatal skin. Cell Host Microbe. 2017;21:467-477.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kobayashi T, Voisin B, Kim DY, Kennedy EA, Jo JH, Shih HY, et al. Homeostatic CONTROL OF SEBACEOUS GLANDS BY INNATE LYMPHOID CELLS REGULATES COMMENSAL BACTERIA EQUILIBRIUM. Cell. 2019;176:982-997.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moran B, Sweeney CM, Hughes R, Malara A, Kirthi S, Tobin AM, et al. Hidradenitis suppurativa is characterized by dysregulation of the Th17: Treg cell axis, which is corrected by anti-TNF therapy. J Invest Dermatol. 2017;137:2389–95.

    Article  CAS  PubMed  Google Scholar 

  22. Leach RD, Eykyn SJ, Phillips I, Corrin B, Taylor EA. Anaerobic axillary abscess. Br Med J. 1979;2:5–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lapins J, Jarstrand C, Emtestam L. Coagulase-negative staphylococci are the most common bacteria found in cultures from the deep portions of hidradenitis suppurativa lesions, as obtained by carbon dioxide laser surgery. Br J Dermatol. 1999;140:90–5.

    Article  CAS  PubMed  Google Scholar 

  24. Katoulis AC, Koumaki D, Liakou AI, Vrioni G, Koumaki V, Kontogiorgi D, et al. Aerobic and anaerobic bacteriology of hidradenitis suppurativa: a study of 22 cases. Ski Appendage Disord. 2015;1:55–9.

    Article  Google Scholar 

  25. Ring HC, Thorsen J, Saunte DM, Lilje B, Bay L, Riis PT, et al. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA Dermatol. 2017;153:897–905.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guet-Revillet H, Coignard-Biehler H, Jais J-P, Quesne G, Frapy E, Poirée S, et al. Bacterial pathogens associated with hidradenitis suppurativa, France. Emerg Infect Dis. 2014;20:1990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ring HC, Sigsgaard V, Thorsen J, Fuursted K, Fabricius S, Saunte DM, et al. The microbiome of tunnels in hidradenitis suppurativa patients. J Eur Acad Dermatol Venereol. 2019;33:1775–80.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao-Fleming HH, Wilkinson JE, Larumbe E, Dissanaike S, Rumbaugh K. Obligate anaerobes are abundant in human necrotizing soft tissue infection samples—a metagenomics analysis. APMIS. 2019;127:577–87.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10:497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ring HC, Bay L, Nilsson M, Kallenbach K, Miller IM, Saunte DM, et al. Bacterial biofilm in chronic lesions of hidradenitis suppurativa. Br J Dermatol. 2017;176:993–1000.

    Article  CAS  PubMed  Google Scholar 

  31. Jahns AC, Killasli H, Nosek D, Lundskog B, Lenngren A, Muratova Z, et al. Microbiology of hidradenitis suppurativa (acne inversa): a histological study of 27 patients. APMIS. 2014;122:804–9.

    Article  PubMed  Google Scholar 

  32. Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control. 2020;9:162.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41:276–301.

    Article  CAS  PubMed  Google Scholar 

  34. Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017;25:744–57.

    Article  PubMed  Google Scholar 

  35. Stoodley P. Evidence for a biofilm-based treatment strategy in the management of chronic hidradenitis suppurativa. Br J Dermatol. 2017;176:855–6.

    Article  CAS  PubMed  Google Scholar 

  36. Chattopadhyay S, Arnold JD, Malayil L, Hittle L, Mongodin EF, Marathe KS, et al. Potential role of the skin and gut microbiota in premenarchal vulvar lichen sclerosus: a pilot case-control study. Mitchell C, editor. PLoS ONE. 2021;16:e0245243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tada H, Nishioka T, Takase A, Numazaki K, Bando K, Matsushita K. Porphyromonas gingivalis induces the production of interleukin-31 by human mast cells, resulting in dysfunction of the gingival epithelial barrier. Cell Microbiol. 2019;21: e12972.

    Article  PubMed  Google Scholar 

  38. Min KR, Galvis A, Baquerizo Nole KL, Sinha R, Clarke J, Kirsner RS, et al. Association between baseline abundance of Peptoniphilus, a Gram-positive anaerobic coccus, and wound healing outcomes of DFUs. PLoS ONE. 2020;15: e0227006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brook I, Frazier EH, Yeager JK. Microbiology of infected atopic dermatitis. Int J Dermatol. 1996;35:791–3.

    Article  CAS  PubMed  Google Scholar 

  40. Brook I. Secondary bacterial infections complicating skin lesions. J Med Microbiol. 2002;51:808–12.

    Article  PubMed  Google Scholar 

  41. Brook I, Frazier EH, Yeager JK. Microbiology of infected poison ivy dermatitis. Br J Dermatol. 2000;142:943–6.

    Article  CAS  PubMed  Google Scholar 

  42. Brook I, Frazier EH, Yeager JK. Microbiology of infected pustular psoriasis lesions. Int J Dermatol. 1999;38:579–81.

    Article  CAS  PubMed  Google Scholar 

  43. Naik HB, Jo JH, Paul M, Kong HH. Skin microbiota perturbations are distinct and disease severity-dependent in hidradenitis suppurativa. J Invest Dermatol. 2020;140:922-925.e3.

    Article  CAS  PubMed  Google Scholar 

  44. Riverain-Gillet É, Guet-Revillet H, Jais JP, Ungeheuer MN, Duchatelet S, Delage M, et al. The surface microbiome of clinically unaffected skinfolds in hidradenitis suppurativa: a cross-sectional culture-based and 16S rRNA gene amplicon sequencing study in 60 patients. J Invest Dermatol. 2020;140:1847-1855.e6.

    Article  CAS  PubMed  Google Scholar 

  45. Jfri AH, O’Brien EA, Litvinov IV, Alavi A, Netchiporouk E. Hidradenitis suppurativa: comprehensive review of predisposing genetic mutations and changes. J Cutan Med Surg. 2019;23:519–27.

    Article  CAS  PubMed  Google Scholar 

  46. Schlapbach C, Hänni T, Yawalkar N, Hunger RE. Expression of the IL-23/Th17 pathway in lesions of hidradenitis suppurativa. J Am Acad Dermatol. 2011;65:790–8.

    Article  CAS  PubMed  Google Scholar 

  47. Thomi R, Cazzaniga S, Morteza Seyed Jafari S, Schlapbach C, Hunger RE. Association of hidradenitis suppurativa with T helper 1/T helper 17 phenotypes a semantic map analysis. JAMA Dermatol. 2018;154:592–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schneider AM, Cook LC, Zhan X, Banerjee K, Cong Z, Imamura-Kawasawa Y, et al. Loss of skin microbial diversity and alteration of bacterial metabolic function in hidradenitis suppurativa. J Invest Dermatol. 2020;140:716–20.

    Article  CAS  PubMed  Google Scholar 

  49. Guenin-Macé L, Morel JD, Doisne JM, Schiavo A, Boulet L, Mayau V, et al. Dysregulation of tryptophan catabolism at the host-skin microbiota interface in hidradenitis suppurativa. JCI Insight. 2020;5: e140598.

    Article  PubMed Central  Google Scholar 

  50. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–24.

    Article  CAS  PubMed  Google Scholar 

  51. Assan F, Gottlieb J, Tubach F, Lebbah S, Guigue N, Hickman G, et al. Anti-Saccharomyces cerevisiae IgG and IgA antibodies are associated with systemic inflammation and advanced disease in hidradenitis suppurativa. J Allergy Clin Immunol. 2020;146:452-455.e5.

    Article  CAS  PubMed  Google Scholar 

  52. Ring HC, Thorsen J, Fuursted K, Bjarnsholt T, Bay L, Egeberg A, et al. Amplicon sequencing demonstrates comparable follicular mycobiomes in patients with hidradenitis suppurativa compared with healthy controls. J Eur Acad Dermatology Venereol. 2022;36:e580–3.

    Article  CAS  Google Scholar 

  53. Ogai K, Nagase S, Mukai K, Iuchi T, Mori Y, Matsue M, et al. A comparison of techniques for collecting skin microbiome samples: swabbing versus tape-stripping. Front Microbiol. 2018;9:2362.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kong HH, Andersson B, Clavel T, Common JE, Jackson SA, Olson ND, et al. Performing skin microbiome research: a method to the madness. J Invest Dermatol. 2017;137:561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naik HB, Piguet V. Standardizing hidradenitis suppurativa skin microbiome research: the methods matter. J Invest Dermatol. 2020;140:1688–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell. 2016;165:854–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science (80-). 2009;326:1694–7.

    Article  CAS  Google Scholar 

  58. Williams SC, Frew JW, Krueger JG. A systematic review and critical appraisal of metagenomic and culture studies in hidradenitis suppurativa. Exp Dermatol. 2021;30:1388–97.

    Article  PubMed  Google Scholar 

  59. Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol. 1996;4:430–5.

    Article  CAS  PubMed  Google Scholar 

  60. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shanahan F. The host-microbe interface within the gut. Best Pr Res Clin Gastroenterol. 2002;16:915–31.

    Article  Google Scholar 

  62. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28:1221–38.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–90.

    Article  CAS  PubMed  Google Scholar 

  64. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45(Suppl):S120–7.

    Article  CAS  PubMed  Google Scholar 

  65. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  67. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  69. Sikora M, Stec A, Chrabaszcz M, Giebultowicz J, Samborowska E, Jazwiec R, et al. Clinical implications of intestinal barrier damage in Psoriasis. J Inflamm Res. 2021;14:237–43.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yegorov S, Babenko D, Kozhakhmetov S, Akhmaltdinova L, Kadyrova I, Nurgozhina A, et al. Psoriasis is associated with elevated gut IL-1α and intestinal microbiome alterations. Front Immunol. 2020;11: 571319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4:293–305.

    Article  CAS  PubMed  Google Scholar 

  72. Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:571731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905.

    Article  CAS  PubMed  Google Scholar 

  74. Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ, Pizano-Zárate ML, García-Mena J, Ramírez-Durán N. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. 2017;2017:4835189

  75. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi C, Cheng M, Yang X, Lu Y, Yin H, Zeng Y, et al. Probiotic Lactobacillus rhamnosus GG promotes mouse gut microbiota diversity and T cell differentiation. Front Microbiol. 2020;11: 607735.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhu TH, Zhu TR, Tran KA, Sivamani RK, Shi VY. Epithelial barrier dysfunctions in atopic dermatitis: a skin-gut-lung model linking microbiome alteration and immune dysregulation. Br J Dermatol. 2018;179:570–81.

    Article  CAS  PubMed  Google Scholar 

  78. Chakaroun R, Massier L, Kovacs P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients. 2020;12:1082.

    Article  CAS  PubMed Central  Google Scholar 

  79. Cartron A, Driscoll MS. Comorbidities of hidradenitis suppurativa: A review of the literature. Int J women’s dermatology. 2019;5:330–4.

    Article  Google Scholar 

  80. Santillan MR, Savage K, Porter M, Parker R, Simon M, Kimball AB. 430 Crohn’s disease prevalence prior to and following hidradenitis suppurativa diagnosis. J Invest Dermatol. 2020;140:S56.

    Article  Google Scholar 

  81. Deckers IE, Benhadou F, Koldijk MJ, del Marmol V, Horváth B, Boer J, et al. Inflammatory bowel disease is associated with hidradenitis suppurativa: results from a multicenter cross-sectional study. J Am Acad Dermatol. 2017;76:49–53.

    Article  PubMed  Google Scholar 

  82. Jo UH, Lee JY, Lee H, Yeop KD, Kang S, Koh SJ, et al. Various skin manifestations related to inflammatory bowel disease: a nationwide cross-sectional study on the Korean population. J Dermatol. 2021;48:431–8.

    Article  PubMed  Google Scholar 

  83. Giudici F, Maggi L, Santi R, Cosmi L, Scaletti C, Annunziato F, et al. Perianal Crohn’s disease and hidradenitis suppurativa: a possible common immunological scenario. Clin Mol Allergy. 2015;13:12.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kelly G, Hughes R, McGarry T, Van Den Born M, Adamzik K, Fitzgerald R, et al. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br J Dermatol. 2015;173:1431–9.

    Article  CAS  PubMed  Google Scholar 

  85. Kam S, Collard M, Lam J, Alani RM. Gut microbiome perturbations in patients with hidradenitis suppurativa: a case series. J Invest Dermatol. 2021;141:225-228.e2.

    Article  CAS  PubMed  Google Scholar 

  86. Molnar J, Mallonee CJ, Stanisic D, Homme RP, George AK, Singh M, et al. Hidradenitis suppurativa and 1-carbon metabolism: role of gut microbiome, matrix metalloproteinases, and hyperhomocysteinemia. Front Immunol. 2020;11:1730.

  87. Lam SY, Radjabzadeh D, Eppinga H, Nossent YRA, van der Zee HH, Kraaij R, et al. A microbiome study to explore the gut-skin axis in hidradenitis suppurativa. J Dermatol Sci. 2021;101:218–20.

    Article  PubMed  Google Scholar 

  88. Sticherling M. Positive influence of probiotics on the gut-skin axis. Kompass Nutr Diet. 2021;1:25–6.

    Article  Google Scholar 

  89. Larsen OFA, Claassen E. The mechanistic link between health and gut microbiota diversity. Sci Rep. 2018;8:2183.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–5.

    Article  PubMed  Google Scholar 

  91. Baron EJ, Curren M, Henderson G, Jousimies-Somer H, Lee K, Lechowitz K, et al. Bilophila wadsworthia isolates from clinical specimens. J Clin Microbiol. 1992;30:1882–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487:104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maldonado-Arriaga B, Sandoval-Jiménez S, Rodríguez-Silverio J, Lizeth Alcaráz-Estrada S, Cortés-Espinosa T, Pérez-Cabeza de Vaca R, et al. Gut dysbiosis and clinical phases of pancolitis in patients with ulcerative colitis. Microbiologyopen. 2021;10:e1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lippert K, Kedenko L, Antonielli L, Kedenko I, Gemeier C, Leitner M, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes. 2017;8:545–56.

    Article  CAS  PubMed  Google Scholar 

  95. Moreno-Arrones OM, Serrano-Villar S, Perez-Brocal V, Saceda-Corralo D, Morales-Raya C, Rodrigues-Barata R, et al. Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers. J Eur Acad Dermatology Venereol. 2020;34:400–5.

    Article  CAS  Google Scholar 

  96. McCarthy S, Barrett M, Kirthi S, Pellanda P, Vlckova K, Tobin A-M, et al. Altered skin and gut microbiome in hidradenitis suppurativa. J Invest Dermatol. 2022;142:459-468.e15.

    Article  CAS  PubMed  Google Scholar 

  97. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011;60:631–7.

    Article  PubMed  Google Scholar 

  98. Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017;9:103.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A. 2019;116:12672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schwarz A, Bruhs A, Schwarz T. The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. J Invest Dermatol. 2017;137:855–64.

    Article  CAS  PubMed  Google Scholar 

  102. Schwarz A, Philippsen R, Schwarz T. Induction of regulatory T cells and correction of cytokine disbalance by short-chain fatty acids: implications for psoriasis therapy. J Invest Dermatol. 2021;141:95-104.e2.

    Article  CAS  PubMed  Google Scholar 

  103. Eppinga H, Sperna Weiland CJ, Thio HB, van der Woude CJ, Nijsten TEC, Peppelenbosch MP, et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis suppurativa. J Crohn’s Colitis. 2016;10:1067–75.

    Article  Google Scholar 

  104. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 2017;11:841–52.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wilson A, Teft WA, Morse BL, Choi YH, Woolsey S, DeGorter MK, et al. Trimethylamine-N-oxide: a novel biomarker for the identification of inflammatory bowel disease. Dig Dis Sci. 2015;60:3620–30.

    Article  CAS  PubMed  Google Scholar 

  106. Guasti L, Galliazzo S, Molaro M, Visconti E, Pennella B, Gaudio GV, et al. TMAO as a biomarker of cardiovascular events: a systematic review and meta-analysis. Intern Emerg Med. 2021;16:201–7.

    Article  PubMed  Google Scholar 

  107. Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients. 2018;10:1971.

    Article  PubMed Central  Google Scholar 

  108. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang W, Miikeda A, Zuckerman J, Jia X, Charugundla S, Zhou Z, et al. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep. 2021;11:518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barrea L, Muscogiuri G, Pugliese G, de Alteriis G, Maisto M, Donnarumma M, et al. Association of trimethylamine N-oxide (TMAO) with the clinical severity of hidradenitis suppurativa (Acne Inversa). Nutrients. 2021;13:1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Romaní J, Caixàs A, Escoté X, Carrascosa JM, Ribera M, Rigla M, et al. Lipopolysaccharide-binding protein is increased in patients with psoriasis with metabolic syndrome, and correlates with C-reactive protein. Clin Exp Dermatol. 2013;38:81–4.

    Article  PubMed  Google Scholar 

  112. Moreno-Navarrete JM, Ortega F, Serino M, Luche E, Waget A, Pardo G, et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes. 2012;36:1442–9.

    Article  CAS  Google Scholar 

  113. Marti A, Martínez I, Ojeda-rodríguez A, Azcona-sanjulian MC. Higher lipopolysaccharide binding protein and chemerin concentrations were associated with metabolic syndrome features in pediatric subjects with abdominal obesity during a lifestyle intervention. Nutrients. 2021;13:1–10.

    Article  Google Scholar 

  114. Hispán P, Murcia O, Gonzalez-Villanueva I, Francés R, Giménez P, Riquelme J, et al. Identification of bacterial DNA in the peripheral blood of patients with active hidradenitis suppurativa. Arch Dermatol Res. 2020;312:159–63.

    Article  PubMed  Google Scholar 

  115. Saad MJA, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016;31:283–93.

    CAS  Google Scholar 

  116. Ghorbani Y, Schwenger KJP, Allard JP. Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. Eur J Nutr. 2021;60:2361–79.

    Article  PubMed  Google Scholar 

  117. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913-916.e7.

    Article  CAS  PubMed  Google Scholar 

  118. Iannone M, Janowska A, Bartolomei G, Puntoni M, Oranges T, Romanelli M, et al. Systemic antibiotics in hidradenitis suppurativa: efficacy and effects of body mass index and smoking pack-year on the response to therapy. Dermatol Ther. 2021;34: e14919.

    Article  PubMed  Google Scholar 

  119. Vilanova I, Hernández JL, Mata C, Durán C, García-Unzueta MT, Portilla V, et al. Insulin resistance in hidradenitis suppurativa: a case-control study. J Eur Acad Dermatol Venereol. 2018;32:820–4.

    Article  CAS  PubMed  Google Scholar 

  120. Özkur E, Erdem Y, Altunay İK, Demir D, Dolu NÇ, Serin E, et al. Serum irisin level, insulin resistance, and lipid profiles in patients with hidradenitis suppurativa: a case-control study. An Bras Dermatol. 2020;95:708–13.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jennings L, Hambly R, Hughes R, Moriarty B, Kirby B. Metformin use in hidradenitis suppurativa. J Dermatol Treat. 2020;31:261–3.

    Article  CAS  Google Scholar 

  122. Moussa C, Wadowski L, Price H, Mirea L, O’Haver J. Metformin as adjunctive therapy for pediatric patients with hidradenitis suppurativa. J Drugs Dermatol. 2020;19:1231–4.

    Article  PubMed  Google Scholar 

  123. Arun B, Loffeld A. Long-standing hidradenitis suppurativa treated effectively with metformin. Clin Exp Dermatol. 2009;34:920–1.

    Article  CAS  PubMed  Google Scholar 

  124. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8.

    Article  CAS  PubMed  Google Scholar 

  125. Wright S, Strunk A, Garg A. Trends in body mass index before and after diagnosis of hidradenitis suppurativa. Br J Dermatol. 2021;185:74–9.

    Article  CAS  PubMed  Google Scholar 

  126. Sánchez-Díaz M, Salvador-Rodríguez L, Montero-Vílchez T, Martínez-López A, Arias-Santiago S, Molina-Leyva A. Cumulative inflammation and HbA1c levels correlate with increased intima-media thickness in patients with severe hidradenitis suppurativa. J Clin Med. 2021;10:5222.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fritsch J, Garces L, Quintero MA, Pignac-Kobinger J, Santander AM, Fernández I, et al. Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2021;19:1189-1199.e30.

    Article  CAS  PubMed  Google Scholar 

  128. Cox SR, Lindsay JO, Fromentin S, Stagg AJ, McCarthy NE, Galleron N, et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology. 2020;158:176-188.e7.

    Article  CAS  PubMed  Google Scholar 

  129. Nakamizo S, Honda T, Sato T, Al Mamun M, Chow Z, Duan K, et al. High-fat diet induces a predisposition to follicular hyperkeratosis and neutrophilic folliculitis in mice. J Allergy Clin Immunol. 2021;148:473-485.e10.

    Article  CAS  PubMed  Google Scholar 

  130. Fernandez JM, Marr KD, Hendricks AJ, Price KN, Ludwig CM, Maarouf M, et al. Alleviating and exacerbating foods in hidradenitis suppurativa. Dermatol Ther. 2020;33: e14246.

    Article  PubMed  Google Scholar 

  131. Barrea L, Fabbrocini G, Annunziata G, Muscogiuri G, Donnarumma M, Marasca C, et al. Role of Nutrition and adherence to the Mediterranean diet in the multidisciplinary approach of hidradenitis suppurativa: evaluation of nutritional status and its association with severity of disease. Nutrients. 2018;11:57.

    Article  PubMed Central  Google Scholar 

  132. William DF. Diet in the prevention of hidradenitis suppurativa (acne inversa). J Am Acad Dermatol. 2015;73:S52–4.

    Article  Google Scholar 

  133. Aboud C, Zamaria N, Cannistrà C. Treatment of hidradenitis suppurativa: Surgery and yeast (Saccharomyces cerevisiae)-exclusion diet. Results after 6 years. Surgery. 2020;167:1012–5.

    Article  PubMed  Google Scholar 

  134. Paetzold B, Willis JR, Pereira de Lima J, Knödlseder N, Brüggemann H, Quist SR, et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019;7:95.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Di Marzio L, Centi C, Cinque B, Masci S, Giuliani M, Arcieri A, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients. Exp Dermatol. 2003;12:615–20.

    Article  PubMed  Google Scholar 

  136. Blanchet-Réthoré S, Bourdès V, Mercenier A, Haddar CH, Verhoeven PO, Andres P. Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. Clin Cosmet Investig Dermatol. 2017;10:249–57.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kim W-K, Jang YJ, Han DH, Seo B, Park S, Lee CH, et al. Administration of Lactobacillus fermentum KBL375 causes taxonomic and functional changes in gut microbiota leading to improvement of atopic dermatitis. Front Mol Biosci. 2019;6:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gerasimov SV, Vasjuta VV, Myhovych OO, Bondarchuk LI. Probiotic supplement reduces Atopic Dermatitis in preschool children: a randomized, double-blind, placebo-controlled, clinical trial. Am J Clin Dermatol. 2010;11:351–61.

    Article  PubMed  Google Scholar 

  139. Navarro-Lopez V, Ramirez-Bosca A, Ramon-Vidal D, Ruzafa-Costas B, Genoves-Martinez S, Chenoll-Cuadros E, et al. Effect of oral administration of a mixture of probiotic strains on SCORAD index and use of topical steroids in young patients with moderate atopic dermatitis a randomized clinical trial. JAMA Dermatol. 2018;154:37–43.

    Article  PubMed  Google Scholar 

  140. Satta R, Pes GM, Rocchi C, Pes MC, Dore MP. Is probiotic use beneficial for skin lesions in patients with inflammatory bowel disease? J Dermatolog Treat. 2019;30:612–6.

    Article  PubMed  Google Scholar 

  141. Ring HC, Thorsen J, Fuursted K, Bjarnsholt T, Bay L, Saunte DM, et al. Probiotics in hidradenitis suppurativa: a potential treatment option? Clin Exp Dermatol. 2022;47:139–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa E. Luck.

Ethics declarations

Funding

There is no funding for this manuscript.

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

Our manuscript has no associated data.

Code availability

Not applicable.

Author contributions

All authors contributed to the manuscript conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by MEL, JT, and EPL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luck, M.E., Tao, J. & Lake, E.P. The Skin and Gut Microbiome in Hidradenitis Suppurativa: Current Understanding and Future Considerations for Research and Treatment. Am J Clin Dermatol 23, 841–852 (2022). https://doi.org/10.1007/s40257-022-00724-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-022-00724-w

Navigation