Skip to main content

Advertisement

Log in

Protective efficacy and safety of radiation-attenuated and chemo-attenuated Plasmodium Falciparum sporozoite vaccines against controlled and natural malaria infection: a systematic review and meta-analysis of randomized controlled trials

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background and Objective

Despite the significant burden of Plasmodium falciparum (Pf) malaria and the licensure of two vaccines for use in infants and young children that are partially effective in preventing clinical malaria caused by Pf, a highly effective vaccine against Pf infection is still lacking. Live attenuated vaccines using Pf sporozoites as the immunogen (PfSPZ Vaccines) hold promise for addressing this gap. Here we review the safety and efficacy of two of the most promising PfSPZ approaches: PfSPZ Vaccine (radiation attenuated PfSPZ) and PfSPZ-CVac (chemo-attenuated PfSPZ).

Methods

We conducted a systematic review and meta-analysis by searching PubMed, EMBASE, SCOPUS, CENTRAL, and WOS until 22nd December 2021. We included randomized controlled trials (RCTs) of these two vaccine approaches that measured protection against parasitaemia following controlled human malaria infection (CHMI) in malaria-naive and malaria-exposed adults or following exposure to naturally transmitted Pf malaria in African adults and children (primary outcome) and that also measured the incidence of solicited and unsolicited adverse events as indicators of safety and tolerability after vaccination (secondary outcome).

We included randomized controlled trials (RCTs) that measured the detected parasitaemia after vaccination (primary outcome) and the incidence of various solicited and unsolicited adverse events (secondary outcome).

The quality of the included RCTs using the Cochrane ROB 1 tool and the quality of evidence using the GRADE system were evaluated. We pooled dichotomous data using the risk ratio (RR) for development of parasitemia in vaccinees relative to controls as a measure of vaccine efficacy (VE), including the corresponding confidence interval (CI). This study was registered with PROSPERO (CRD42022308057).

Results

We included 19 RCTs. Pooled RR favoured PfSPZ Vaccine (RR: 0.65 with 95% CI [0.53, 0.79], P = 0.0001) and PfSPZ-table (RR: 0.42 with 95% CI [0.27, 0.67], P = 0.0002) for preventing parasitaemia, relative to normal saline placebo. Pooled RR showed no difference between PfSPZ Vaccine and the control in the occurrence of any solicited adverse event (RR: 1.00 with 95% CI [0.82, 1.23], P = 0.98), any local solicited adverse events (RR: 0.73 with 95% CI [0.49, 1.08], P = 0.11), any systemic solicited adverse events (RR: 0.94 with 95% CI [0.75, 1.17], P = 0.58), and any unsolicited adverse event (RR: 0.93 with 95% CI [0.78, 1.10], P = 0.37).

Conclusion

PfSPZ and PfSPZ-CVacs showed comparable efficacy. Therefore, they can introduce a promising strategy for malaria prophylaxis, but more large-scale field trials are required to sustain efficacy and yield clinically applicable findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available on request.

References

  1. Malaria vaccines: preferred product characteristics and clinical development considerations. https://www.who.int/publications-detail-redirect/9789240057463. Accessed 10 Nov 2023.

  2. Autoridad Nacional del Servicio Civil. World malaria report 2021. Angewandte Chemie International Edition, 6(11), 951–952. 2021;2013–5.

  3. World Health Organization (WHO). Malaria. Geneva: World Health Organization; 2021.

    Google Scholar 

  4. WHO Global. World malaria report 2019. Brazzaville: WHO Regional Office for Africa; 2019. p. 1–232.

    Google Scholar 

  5. Sulyok Z, Fendel R, Eder B, Lorenz FR, Kc N, Karnahl M, et al. Heterologous protection against malaria by a simple chemoattenuated PfSPZ vaccine regimen in a randomized trial. Nat Commun. 2021;12:1–10.

    Article  Google Scholar 

  6. Zheng J, Pan H, Gu Y, Zuo X, Ran N, Yuan Y, et al. Prospects for malaria vaccines: pre-erythrocytic stages, blood stages, and transmission-blocking stages. BioMed Res Int. 2019;2019:1.

    Google Scholar 

  7. World Health Organization. Global technical strategy for malaria 2016–2030, 2021 update. Geneva: World Health Organization; 2021. p. 1–40.

    Google Scholar 

  8. Choumet V, Attout T, Chartier L, Khun H, Sautereau J, Robbe-Vincent A, et al. Visualizing non infectious and infectious anopheles gambiae blood feedings in naive and saliva-immunized mice. PLoS ONE. 2012;7:e50464. https://doi.org/10.1371/journal.pone.0050464.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine. 2015;33:D13-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duffy PE, Sahu T, Akue A, Milman N, Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines. 2012;11:1261–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445–9.

    Article  ADS  PubMed  Google Scholar 

  12. Lyke KE, Ishizuka AS, Berry AA, Chakravarty S, DeZure A, Enama ME, et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci USA. 2017;114:2711–6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spring M, Polhemus M, Ockenhouse C. Controlled human malaria infection. J Infect Dis. 2014;209:S40–5.

    Article  PubMed  Google Scholar 

  14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med. 2021;18:e1003583.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Innovation VH. Covidence systematic review software. Melbourne, Australia.

  16. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ. Rating quality of evidence and strength of recommendations: what is “quality of evidence” and why is it important to clinicians? BMJ Br Med J. 2008;336:995.

    Article  Google Scholar 

  18. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. Rating quality of evidence and strength of recommendations: GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ Br Med J. 2008;336:924.

    Article  Google Scholar 

  19. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Br Med J. 2003;327:557.

    Article  Google Scholar 

  20. RevMan | Cochrane Training. https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman. Accessed 3 Aug 2021.

  21. MedCalc® Statistical Software version 20.027 (MedCalc Software Ltd, Ostend, Belgium. 2022. https://www.medcalc.org

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J. 2003;327:557–60.

    Article  Google Scholar 

  23. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sissoko MS, Healy SA, Katile A, Omaswa F, Zaidi I, Gabriel EE, et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect Dis. 2017;17:498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jongo SA, Preston Church LW, Mtoro AT, Schindler T, Chakravarty S, Ruben AJ, et al. Increase of dose associated with decrease in protection against controlled human malaria infection by PfSPZ vaccine in Tanzanian Adults. Clin Infect Dis. 2020;71:2849–57.

    Article  CAS  PubMed  Google Scholar 

  26. Steinhardt LC, Richie TL, Yego R, Akach D, Hamel MJ, Gutman JR, et al. Safety, tolerability, and immunogenicity of plasmodium falciparum sporozoite vaccine administered by direct venous inoculation to infants and young children: Findings from an age de-escalation, dose-escalation, double-blind, randomized controlled study in. Clin Infect Dis. 2020;71:1063–71.

    Article  CAS  PubMed  Google Scholar 

  27. Jongo SA, Church LWP, Mtoro AT, Chakravarty S, Ruben AJ, Swanson PA, et al. Safety and differential antibody and T-cell responses to the plasmodium falciparum sporozoite malaria vaccine, PfSPZ vaccine, by age in tanzanian adults, adolescents, children, and infants. Am J Trop Med Hyg. 2019;100:1433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olotu A, Urbano V, Hamad A, Eka M, Chemba M, Nyakarungu E, et al. Advancing global health through development and clinical trials partnerships: a randomized, placebo-controlled, double-blind assessment of safety, tolerability, and immunogenicity of pfspz vaccine for malaria in healthy equatoguinean men. Am J Trop Med Hyg. 2018;98:308–18.

    Article  PubMed  Google Scholar 

  29. Jongo SA, Shekalaghe SA, Preston Church LW, Ruben AJ, Schindler T, Zenklusen I, et al. Safety, immunogenicity, and protective efficacy against controlled human malaria infection of plasmodium falciparum sporozoite vaccine in Tanzanian adults. Am J Trop Med Hyg. 2018;99:338–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sissoko MS, Healy SA, Katile A, Zaidi I, Hu Z, Kamate B, et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. Lancet Infect Dis. 2022;22:377–89.

    Article  CAS  PubMed  Google Scholar 

  31. Jongo SA, Urbano V, Preston Church LW, Olotu A, Manock SR, Schindler T, et al. Immunogenicity and protective efficacy of radiation-attenuated and chemo-attenuated PfSPZ vaccines in equatoguinean adults. Am J Trop Med Hyg. 2021;104:283–93.

    Article  CAS  PubMed  Google Scholar 

  32. Murphy SC, Deye GA, Kim Lee Sim B, Galbiati S, Kennedy JK, Cohen KW, et al. PfSPZ-CVac efficacy against malaria increases from 0% to 75% when administered in the absence of erythrocyte stage parasitemia: a randomized, placebo-controlled trial with controlled human malaria infection. PLoS Pathog. 2021;17:1–23.

    Article  Google Scholar 

  33. Epstein JE, Paolino KM, Richie TL, Sedegah M, Singer A, Ruben AJ, et al. Protection against Plasmodium falciparum malaria by PfSPZ Vaccine. JCI Insight. 2017;2:1–14.

    Article  Google Scholar 

  34. Mwakingwe-Omari A, Healy SA, Lane J, Cook DM, Kalhori S, Wyatt C, et al. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature. 2021;595:289–94.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Lyke KE, Singer A, Berry AA, Reyes S, Chakravarty S, James ER, et al. Multidose priming and delayed boosting improve Plasmodium falciparum Sporozoite vaccine efficacy against heterologous P. falciparum controlled human malaria infection. Clin Infect Dis. 2021;73:e2424–35.

    Article  CAS  PubMed  Google Scholar 

  36. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341:1359–65.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med. 2016;22:614–23.

    Article  CAS  PubMed  Google Scholar 

  38. Oneko M, Steinhardt LC, Yego R, Wiegand RE, Swanson PA, Kc N, et al. Safety, immunogenicity and efficacy of PfSPZ Vaccine against malaria in infants in western Kenya: a double-blind, randomized, placebo-controlled phase 2 trial. Nat Med. 2021;27:1636–45.

    Article  CAS  PubMed  Google Scholar 

  39. Shekalaghe S, Rutaihwa M, Billingsley PF, Chemba M, Daubenberger CA, James ER, et al. Controlled human malaria infection of Tanzanians by intradermal injection of aseptic, purified, cryopreserved plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2014;91:471–80.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kamau E, Alemayehu S, Feghali KC, Saunders D, Ockenhouse CF. Multiplex qPCR for detection and absolute quantification of malaria. PLoS ONE. 2013;8:e71539.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goh YS, McGuire D, Rénia L. Vaccination with sporozoites: models and correlates of protection. Front Immunol. 2019;10:1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. EMA. First malaria vaccine receives positive scientific opinion from EMA. European Medicines Agency. 2018. https://www.ema.europa.eu/en/news/first-malaria-vaccine-receives-positive-scientific-opinion-ema. Accessed 10 Nov 2023.

  43. Wagle MV, Marchingo JM, Howitt J, Tan SS, Goodnow CC, Parish IA. The ubiquitin ligase adaptor NDFIP1 selectively enforces a CD8+ T cell tolerance checkpoint to high-dose antigen. Cell Rep. 2018;24:577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cornberg M, Kenney LL, Chen AT, Waggoner SN, Kim SK, Dienes HP, et al. Clonal exhaustion as a mechanism to protect against severe immunopathology and death from an overwhelming CD8 T cell response. Front Immunol. 2013. https://doi.org/10.3389/fimmu.2013.00475.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Han S, Asoyan A, Rabenstein H, Nakano N, Obst R. Role of antigen persistence and dose for CD4+ T-cell exhaustion and recovery. Proc Natl Acad Sci USA. 2010;107:20453–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Michallet M-C, Saltel F, Flacher M, Revillard J-P, Genestier L. Cathepsin-dependent apoptosis triggered by Supraoptimal activation of T lymphocytes: a possible mechanism of high dose tolerance. J Immunol. 2004;172:5405–14.

    Article  CAS  PubMed  Google Scholar 

  47. Haneda K, Sano K, Tamura G, Shirota H, Ohkawara Y, Sato T, et al. Transforming growth factor-β secreted from CD4+ T cells ameliorates antigen-induced eosinophilic inflammation: a novel high-dose tolerance in the trachea. Am J Respir Cell Mol Biol. 1999;21:268–74.

    Article  CAS  PubMed  Google Scholar 

  48. Critchfield JM, Zúñiga-Pflücker JC, Lenardo MJ. Parameters controlling the programmed death of mature mouse T lymphocytes in high-dose suppression. Cell Immunol. 1995;160:71–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Am J Prev Med. 2015;49:S319–33.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Richie TL, Billingsley PF, Sim BKL, James ER, Chakravarty S, Epstein JE, et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine. 2015;33:7452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jongo SA, Urbano Nsue Ndong Nchama V, Church LWP, Olotu A, Manock SR, Schindler T, et al. Safety and immunogenicity of radiation-attenuated PfSPZ vaccine in equatoguinean infants, children, and adults. Am J Trop Med Hyg. 2023;109:138–46.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sirima SB, Ouédraogo A, Tiono AB, Kaboré JM, Bougouma EC, Ouattara MS, et al. A randomized controlled trial showing safety and efficacy of a whole sporozoite vaccine against endemic malaria. Sci Transl Med. 2022;14:abj3776. https://doi.org/10.1126/scitranslmed.abj3776.

    Article  CAS  Google Scholar 

  53. Garcia CR, Manzi F, Tediosi F, Hoffman SL, James ER. Comparative cost models of a liquid nitrogen vapor phase (LNVP) cold chain-distributed cryopreserved malaria vaccine vs. a conventional vaccine. Vaccine. 2013;31:380–6.

    Article  PubMed  Google Scholar 

  54. Coulibaly D, Kone AK, Traore K, Niangaly A, Kouriba B, Arama C, et al. PfSPZ-CVac malaria vaccine demonstrates safety among malaria-experienced adults: a randomized, controlled phase 1 trial. EClinicalMedicine. 2022;52:101579.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jongo SA, Church LWP, Nchama VUNN, Hamad A, Chuquiyauri R, Kassim KR, et al. Multi-dose priming regimens of PfSPZ vaccine: safety and efficacy against controlled human malaria infection in Equatoguinean adults. Am J Trop Med Hyg. 2022;106:1215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mordmüller B, Sulyok Z, Sulyok M, Molnar Z, Lalremruata A, Calle CL, et al. A PfSPZ vaccine immunization regimen equally protective against homologous and heterologous controlled human malaria infection. NPJ Vaccines. 2022;7:100.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mohamed Abouzid is a participant in the STER Internationalization of Doctoral Schools Program of the NAWA Polish National Agency for Academic Exchange No. PPI/STE/2020/1/00014/DEC/02.

Funding

We received no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

MTA conceived and designed the work. BA and MTA collected the data. MTA, MAE, MG, MAgheit, HB, and MAzid gave substantial contributions to data acquisition and interpretation for the work; MTA, MKA, and HB drafted the manuscript. BA, SA, MTA, MAE, and MAzid revised it critically for important intellectual content. All the authors gave the final approval of the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohamed Abouzid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 248 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuelazm, M.T., Elzeftawy, M.A., Kamal, M.A. et al. Protective efficacy and safety of radiation-attenuated and chemo-attenuated Plasmodium Falciparum sporozoite vaccines against controlled and natural malaria infection: a systematic review and meta-analysis of randomized controlled trials. Infection (2024). https://doi.org/10.1007/s15010-024-02174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s15010-024-02174-4

Keywords

Navigation