Skip to main content
Log in

IgG antibody levels against the SARS-CoV-2 spike protein in mother–child dyads after COVID-19 vaccination

  • Research
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

We aimed to assess IgG antibodies against the SARS-CoV-2 spike protein (anti-SARS-CoV-2 S IgG) in vaccinated mothers and their infants at delivery and 2–3 months of age.

Methods

We conducted a prospective study on mothers who received at least one dose of the COVID-19 vaccine (Pfizer-BNT162b2, Moderna mRNA-1273, or Oxford-AstraZeneca ChAdOx1-S) during pregnancy and on their infants. The baseline was at the time of delivery (n = 93), and the end of follow-up was 2 to 3 months post-partum (n = 53). Serum anti-SARS-CoV-2 S IgG titers and ACE2 binding inhibition levels were quantified by immunoassays.

Results

Mothers and infants had high anti-SARS-CoV-2 S IgG titers against the B.1 lineage at birth. However, while antibody titers were maintained at 2–3 months post-partum in mothers, they decreased significantly in infants (p < 0.001). Positive and significant correlations were found between anti-SARS-CoV-2 S IgG titers and ACE2-binding inhibition levels in mothers and infants at birth and 2–3 months post-partum (r > 0.8, p < 0.001). Anti-S antibodies were also quantified for the Omicron variant at 2–3 months post-partum. The antibody titers against Omicron were significantly lower in mothers and infants than those against B.1 (p < 0.001). Again, a positive correlation was observed for Omicron between IgG titers and ACE2-binding inhibition both in mothers (r = 0.818, p < 0.001) and infants (r = 0.386, p < 0.005). Previous SARS-CoV-2 infection and COVID-19 vaccination near delivery positively impacted anti-SARS-CoV-2 S IgG levels.

Conclusions

COVID-19 mRNA vaccines induce high anti-SARS-CoV-2 S titers in pregnant women, which can inhibit the binding of ACE2 to protein S and are efficiently transferred to the fetus. However, there was a rapid decrease in antibody levels at 2 to 3 months post-partum, particularly in infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

SARS-CoV-2:

Severe Acute Respiratory Syndrome Coronavirus 2

COVID-19:

Coronavirus disease 2019

ACE2:

Angiotensin-converting enzyme 2

IgG:

Immunoglobulin G

Anti-SARS-CoV-2 S IgG:

IgG against the SARS-CoV-2 spike protein

HGUGM:

Hospital General Universitario Gregorio Marañón

ELISA:

Enzyme-linked immunosorbent assay

AUC:

Area under the curve

IQR:

Interquartile range

GLM:

Generalized Linear Models

AMR:

Arithmetic mean ratio

aAMR:

Adjusted arithmetic mean ratio

95%CI:

95% Confidence interval

References

  1. Korang SK, von Rohden E, Veroniki AA, Ong G, Ngalamika O, Siddiqui F, et al. Vaccines to prevent COVID-19: a living systematic review with trial sequential analysis and network meta-analysis of randomized clinical trials. PLoS ONE. 2022;17(1): e0260733. https://doi.org/10.1371/journal.pone.0260733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92 e6. https://doi.org/10.1016/j.cell.2020.02.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann A, et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020. https://doi.org/10.1126/sciimmunol.abc8413.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chmielewska B, Barratt I, Townsend R, Kalafat E, van der Meulen J, Gurol-Urganci I, et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob Health. 2021. https://doi.org/10.1016/S2214-109X(21)00079-6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zambrano LD, Ellington S, Strid P, Galang RR, Oduyebo T, Tong VT, et al. Update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status—United States, January 22-October 3, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1641–7. https://doi.org/10.15585/mmwr.mm6944e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeSisto CL, Wallace B, Simeone RM, Polen K, Ko JY, Meaney-Delman D, et al. Risk for stillbirth among women with and without COVID-19 at delivery hospitalization—United States, March 2020-September 2021. MMWR Morb Mortal Wkly Rep. 2021;70(47):1640–5. https://doi.org/10.15585/mmwr.mm7047e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woodworth KR, Olsen EO, Neelam V, Lewis EL, Galang RR, Oduyebo T, et al. Birth and infant outcomes following laboratory-confirmed SARS-CoV-2 infection in pregnancy—SET-NET, 16 jurisdictions, March 29-October 14, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1635–40. https://doi.org/10.15585/mmwr.mm6944e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Metz TD, Clifton RG, Hughes BL, Sandoval G, Saade GR, Grobman WA, et al. Disease severity and perinatal outcomes of pregnant patients with coronavirus disease 2019 (COVID-19). Obstet Gynecol. 2021;137(4):571–80. https://doi.org/10.1097/AOG.0000000000004339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Metz TD, Clifton RG, Hughes BL, Sandoval GJ, Grobman WA, Saade GR, et al. Association of SARS-CoV-2 infection with serious maternal morbidity and mortality from obstetric complications. JAMA. 2022;327(8):748–59. https://doi.org/10.1001/jama.2022.1190.

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz DA, Avvad-Portari E, Babal P, Baldewijns M, Blomberg M, Bouachba A, et al. Placental tissue destruction and insufficiency from COVID-19 causes stillbirth and neonatal death from hypoxic-ischemic injury. Arch Pathol Lab Med. 2022;146(6):660–76. https://doi.org/10.5858/arpa.2022-0029-SA.

    Article  CAS  PubMed  Google Scholar 

  11. Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17(8):469–82. https://doi.org/10.1038/nri.2017.64.

    Article  CAS  PubMed  Google Scholar 

  12. Marks KJ, Whitaker M, Agathis NT, Anglin O, Milucky J, Patel K, et al. Hospitalization of infants and children aged 0–4 years with laboratory-confirmed COVID-19—COVID-NET, 14 States, March 2020-February 2022. MMWR Morb Mortal Wkly Rep. 2022;71(11):429–36. https://doi.org/10.15585/mmwr.mm7111e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hobbs CV, Woodworth K, Young CC, Jackson AM, Newhams MM, Dapul H, et al. Frequency, characteristics and complications of COVID-19 in hospitalized Infants. Pediatr Infect Dis J. 2022;41(3):e81–6. https://doi.org/10.1097/INF.0000000000003435.

    Article  PubMed  Google Scholar 

  14. Centers for Disease Control and Prevention. Pregnant and Recently Pregnant People. At Increased Risk for Severe Illness from COVID-19. 2022. Available at: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/pregnant-people.html

  15. Butt AA, Chemaitelly H, Al Khal A, Coyle PV, Saleh H, Kaleeckal AH, et al. SARS-CoV-2 vaccine effectiveness in preventing confirmed infection in pregnant women. J Clin Invest. 2021. https://doi.org/10.1172/JCI153662.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dagan N, Barda N, Biron-Shental T, Makov-Assif M, Key C, Kohane IS, et al. Effectiveness of the BNT162b2 mRNA COVID-19 vaccine in pregnancy. Nat Med. 2021;27(10):1693–5. https://doi.org/10.1038/s41591-021-01490-8.

    Article  CAS  PubMed  Google Scholar 

  17. Shimabukuro TT, Kim SY, Myers TR, Moro PL, Oduyebo T, Panagiotakopoulos L, et al. Preliminary findings of mRNA Covid-19 vaccine safety in pregnant persons. N Engl J Med. 2021;384(24):2273–82. https://doi.org/10.1056/NEJMoa2104983.

    Article  CAS  PubMed  Google Scholar 

  18. Collier AY, McMahan K, Yu J, Tostanoski LH, Aguayo R, Ansel J, et al. Immunogenicity of COVID-19 mRNA vaccines in pregnant and lactating women. JAMA. 2021;325(23):2370–80. https://doi.org/10.1001/jama.2021.7563.

    Article  CAS  PubMed  Google Scholar 

  19. Gray KJ, Bordt EA, Atyeo C, Deriso E, Akinwunmi B, Young N, et al. Coronavirus disease 2019 vaccine response in pregnant and lactating women: a cohort study. Am J Obstet Gynecol. 2021;225(3):303 e1-e17. https://doi.org/10.1016/j.ajog.2021.03.023.

    Article  CAS  PubMed  Google Scholar 

  20. Halasa NB, Olson SM, Staat MA, Newhams MM, Price AM, Boom JA, et al. Effectiveness of maternal vaccination with mRNA COVID-19 vaccine during pregnancy against COVID-19-associated hospitalization in infants aged <6 months—17 States, July 2021-January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(7):264–70. https://doi.org/10.15585/mmwr.mm7107e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin-Vicente M, Carrasco I, Munoz-Gomez MJ, Lobo AH, Mas V, Vigil-Vazquez S, et al. Antibody levels to SARS-CoV-2 spike protein in mothers and children from delivery to six months later. Birth. 2022. https://doi.org/10.1111/birt.12667.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carlsen EO, Magnus MC, Oakley L, Fell DB, Greve-Isdahl M, Kinge JM, et al. Association of COVID-19 vaccination during pregnancy with incidence of SARS-CoV-2 infection in infants. JAMA Intern Med. 2022. https://doi.org/10.1001/jamainternmed.2022.2442.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Halasa NB, Olson SM, Staat MA, Newhams MM, Price AM, Pannaraj PS, et al. Maternal vaccination and risk of hospitalization for Covid-19 among infants. N Engl J Med. 2022. https://doi.org/10.1056/NEJMoa2204399.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Atyeo CG, Shook LL, Brigida S, De Guzman RM, Demidkin S, Muir C, et al. Maternal immune response and placental antibody transfer after COVID-19 vaccination across trimester and platforms. Nat Commun. 2022;13(1):3571. https://doi.org/10.1038/s41467-022-31169-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pietrasanta C, Darwich A, Ronchi A, Crippa B, Spada E, Mosca F, et al. Humoral response to anti-SARS-CoV-2 vaccine in breastfeeding mothers and mother-to-infant antibody transfer through breast milk. NPJ Vaccines. 2022;7(1):63. https://doi.org/10.1038/s41541-022-00499-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fox A, Marino J, Amanat F, Krammer F, Hahn-Holbrook J, Zolla-Pazner S, et al. Robust and specific secretory IgA against SARS-CoV-2 detected in human milk. iScience. 2020;23(11):101735. https://doi.org/10.1016/j.isci.2020.101735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perl SH, Uzan-Yulzari A, Klainer H, Asiskovich L, Youngster M, Rinott E, et al. SARS-CoV-2-specific antibodies in breast milk after COVID-19 vaccination of breastfeeding women. JAMA. 2021;325(19):2013–4. https://doi.org/10.1001/jama.2021.5782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goncalves J, Juliano AM, Charepe N, Alenquer M, Athayde D, Ferreira F, et al. Secretory IgA and T cells targeting SARS-CoV-2 spike protein are transferred to the breastmilk upon mRNA vaccination. Cell Rep Med. 2021;2(12): 100468. https://doi.org/10.1016/j.xcrm.2021.100468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dude CM, Joseph NT, Forrest AD, Verkerke HP, Cheedarla N, Govindaraj S, et al. Antibody response, neutralizing potency, and transplacental antibody transfer following SARS-CoV-2 infection versus mRNA-1273, BNT162b2 COVID-19 vaccination in pregnancy. Int J Gynaecol Obstet. 2023;162(1):154–62. https://doi.org/10.1002/ijgo.14648.

    Article  CAS  PubMed  Google Scholar 

  30. Gray KJ, Bordt EA, Atyeo C, Deriso E, Akinwunmi B, Young N, et al. COVID-19 vaccine response in pregnant and lactating women: a cohort study. medRxiv. 2021. https://doi.org/10.1101/2021.03.07.21253094.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nir O, Schwartz A, Toussia-Cohen S, Leibovitch L, Strauss T, Asraf K, et al. Maternal-neonatal transfer of SARS-CoV-2 immunoglobulin G antibodies among parturient women treated with BNT162b2 messenger RNA vaccine during pregnancy. Am J Obstet Gynecol MFM. 2022;4(1): 100492. https://doi.org/10.1016/j.ajogmf.2021.100492.

    Article  CAS  PubMed  Google Scholar 

  32. Prabhu M, Murphy EA, Sukhu AC, Yee J, Singh S, Eng D, et al. Antibody response to coronavirus disease 2019 (COVID-19) messenger RNA vaccination in pregnant women and transplacental passage into cord blood. Obstet Gynecol. 2021;138(2):278–80. https://doi.org/10.1097/AOG.0000000000004438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mithal LB, Otero S, Shanes ED, Goldstein JA, Miller ES. Cord blood antibodies following maternal coronavirus disease 2019 vaccination during pregnancy. Am J Obstet Gynecol. 2021;225(2):192–4. https://doi.org/10.1016/j.ajog.2021.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otero S, Miller ES, Sunderraj A, Shanes ED, Sakowicz A, Goldstein JA, et al. Maternal antibody response and transplacental transfer following severe acute respiratory syndrome coronavirus 2 infection or vaccination in pregnancy. Clin Infect Dis. 2023;76(2):220–8. https://doi.org/10.1093/cid/ciac793.

    Article  CAS  PubMed  Google Scholar 

  35. Munoz FM, Posavad CM, Richardson BA, Badell ML, Bunge KE, Mulligan MJ, et al. COVID-19 booster vaccination during pregnancy enhances maternal binding and neutralizing antibody responses and transplacental antibody transfer to the newborn. Vaccine. 2023;41(36):5296–303. https://doi.org/10.1016/j.vaccine.2023.06.032.

    Article  CAS  PubMed  Google Scholar 

  36. Shook LL, Atyeo CG, Yonker LM, Fasano A, Gray KJ, Alter G, et al. Durability of anti-spike antibodies in infants after maternal COVID-19 vaccination or natural infection. JAMA. 2022;327(11):1087–9. https://doi.org/10.1001/jama.2022.1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carrasco I, Munoz-Chapuli M, Vigil-Vazquez S, Aguilera-Alonso D, Hernandez C, Sanchez-Sanchez C, et al. SARS-COV-2 infection in pregnant women and newborns in a Spanish cohort (GESNEO-COVID) during the first wave. BMC Pregnancy Childbirth. 2021;21(1):326. https://doi.org/10.1186/s12884-021-03784-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vazquez-Alejo E, Tarancon-Diez L, Carrasco I, Vigil-Vazquez S, Munoz-Chapuli M, Rincon-Lopez E, et al. SARS-CoV2 infection during pregnancy causes persistent immune abnormalities in women without affecting the newborns. Front Immunol. 2022;13: 947549. https://doi.org/10.3389/fimmu.2022.947549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tre-Hardy M, Wilmet A, Beukinga I, Favresse J, Dogne JM, Douxfils J, et al. Analytical and clinical validation of an ELISA for specific SARS-CoV-2 IgG, IgA, and IgM antibodies. J Med Virol. 2021;93(2):803–11. https://doi.org/10.1002/jmv.26303.

    Article  CAS  PubMed  Google Scholar 

  40. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3. https://doi.org/10.1126/science.abb2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science. 2020;369(6510):1501–5. https://doi.org/10.1126/science.abd0826.

    Article  CAS  PubMed  Google Scholar 

  42. Jamieson DJ, Rasmussen SA. An update on COVID-19 and pregnancy. Am J Obstet Gynecol. 2022;226(2):177–86. https://doi.org/10.1016/j.ajog.2021.08.054.

    Article  CAS  PubMed  Google Scholar 

  43. Falsaperla R, Leone G, Familiari M, Ruggieri M. COVID-19 vaccination in pregnant and lactating women: a systematic review. Expert Rev Vaccines. 2021;20(12):1619–28. https://doi.org/10.1080/14760584.2021.1986390.

    Article  CAS  PubMed  Google Scholar 

  44. Matsui Y, Li L, Prahl M, Cassidy AG, Ozarslan N, Golan Y, et al. Neutralizing antibody activity against SARS-CoV-2 variants in gestational age-matched mother-infant dyads after infection or vaccination. JCI Insight. 2022. https://doi.org/10.1172/jci.insight.157354.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Theiler RN, Wick M, Mehta R, Weaver AL, Virk A, Swift M. Pregnancy and birth outcomes after SARS-CoV-2 vaccination in pregnancy. Am J Obstet Gynecol MFM. 2021;3(6): 100467. https://doi.org/10.1016/j.ajogmf.2021.100467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flannery DD, Gouma S, Dhudasia MB, Mukhopadhyay S, Pfeifer MR, Woodford EC, et al. Assessment of maternal and neonatal cord blood SARS-CoV-2 antibodies and placental transfer ratios. JAMA Pediatr. 2021;175(6):594–600. https://doi.org/10.1001/jamapediatrics.2021.0038.

    Article  PubMed  Google Scholar 

  47. Joseph NT, Dude CM, Verkerke HP, Irby LS, Dunlop AL, Patel RM, et al. Maternal antibody response, neutralizing potency, and placental antibody transfer after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Obstet Gynecol. 2021;138(2):189–97. https://doi.org/10.1097/AOG.0000000000004440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rathberger K, Hausler S, Wellmann S, Weigl M, Langhammer F, Bazzano MV, et al. SARS-CoV-2 in pregnancy and possible transfer of immunity: assessment of peripartal maternal and neonatal antibody levels and a longitudinal follow-up. J Perinat Med. 2021;49(6):702–8. https://doi.org/10.1515/jpm-2021-0166.

    Article  CAS  PubMed  Google Scholar 

  49. Rottenstreich A, Zarbiv G, Oiknine-Djian E, Vorontsov O, Zigron R, Kleinstern G, et al. Timing of SARS-CoV-2 vaccination during the third trimester of pregnancy and transplacental antibody transfer: a prospective cohort study. Clin Microbiol Infect. 2022;28(3):419–25. https://doi.org/10.1016/j.cmi.2021.10.003.

    Article  CAS  PubMed  Google Scholar 

  50. Popescu DE, Citu C, Jura AMC, Lungu N, Navolan D, Craina M, et al. The benefits of vaccination against SARS-CoV-2 during pregnancy in favor of the mother/newborn dyad. Vaccines (Basel). 2022;10(6):848. https://doi.org/10.3390/vaccines10060848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burns MD, Muir C, Atyeo C, Davis JP, Demidkin S, Akinwunmi B, et al. Relationship between anti-spike antibodies and risk of SARS-CoV-2 infection in infants born to COVID-19 vaccinated mothers. Vaccines (Basel). 2022;10(10):1696. https://doi.org/10.3390/vaccines10101696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalafat E, Magee LA, von Dadelszen P, Heath P, Khalil A. COVID-19 booster doses in pregnancy and global vaccine equity. Lancet. 2022;399(10328):907–8. https://doi.org/10.1016/S0140-6736(22)00166-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moore KM, Suthar MS. Comprehensive analysis of COVID-19 during pregnancy. Biochem Biophys Res Commun. 2021;538:180–6. https://doi.org/10.1016/j.bbrc.2020.12.064.

    Article  CAS  PubMed  Google Scholar 

  54. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012: 985646. https://doi.org/10.1155/2012/985646.

    Article  CAS  PubMed  Google Scholar 

  55. Yang YJ, Murphy EA, Singh S, Sukhu AC, Wolfe I, Adurty S, et al. Association of gestational age at coronavirus disease 2019 (COVID-19) vaccination, history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and a vaccine booster dose with maternal and umbilical cord antibody levels at delivery. Obstet Gynecol. 2022;139(3):373–80. https://doi.org/10.1097/AOG.0000000000004693.

    Article  CAS  PubMed  Google Scholar 

  56. Kugelman N, Nahshon C, Shaked-Mishan P, Cohen N, Lahav Sher M, Barsha H, et al. Third trimester messenger RNA COVID-19 booster vaccination upsurge maternal and neonatal SARS-CoV-2 immunoglobulin G antibody levels at birth. Eur J Obstet Gynecol Reprod Biol. 2022;274:148–54. https://doi.org/10.1016/j.ejogrb.2022.05.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cortes-Sarabia K, Gutierrez-Torres M, Mendoza-Renteria EM, Leyva-Vazquez MA, Vences-Velazquez A, Hernandez-Sotelo D, et al. Variation in the humoral immune response induced by the administration of the BNT162b2 Pfizer/BioNTech vaccine: a systematic review. Vaccines (Basel). 2022;10(6):909. https://doi.org/10.3390/vaccines10060909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med. 2021;384(14):1372–4. https://doi.org/10.1056/NEJMc2101667.

    Article  CAS  PubMed  Google Scholar 

  59. Hoffmann M, Kruger N, Schulz S, Cossmann A, Rocha C, Kempf A, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell. 2022;185(3):447-56 e11. https://doi.org/10.1016/j.cell.2021.12.032.

    Article  CAS  PubMed  Google Scholar 

  60. Shen CJ, Fu YC, Lin YP, Shen CF, Sun DJ, Chen HY, et al. Evaluation of transplacental antibody transfer in SARS-CoV-2-immunized pregnant women. Vaccines (Basel). 2022;10(1):101. https://doi.org/10.3390/vaccines10010101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Esteve-Palau E, Gonzalez-Cuevas A, Guerrero ME, Garcia-Terol C, Alvarez MC, Garcia G, et al. Quantification and progress over time of specific antibodies against severe acute respiratory syndrome coronavirus 2 in breast milk of lactating women vaccinated with BNT162b2 Pfizer-BioNTech coronavirus disease 2019 vaccine (LacCOVID). Open Forum Infect Dis. 2022;9(6):239. https://doi.org/10.1093/ofid/ofac239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study would not have been possible without the collaboration of all the patients, medical and nursery staff, and data managers who participated in the project.

Funding

This study was supported by grants from Instituto de Salud Carlos III (ISCII; grant numbers COV20_00808). The study was also funded by the Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CB21/13/00044 and CB21/13/00077) and de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (CB22/01/00041). LTD is supported by the Instituto de Salud Carlos III (ISCIII) under grant agreement “CD20/00025” through the Sara Borrell Program. DSC is a ‘Sara Borrell’ researcher supported by ISCIII (grant number CD20CIII/00001).

Author information

Authors and Affiliations

Authors

Contributions

Data curation: MJMG, MMV, SVV, IC, AHL, LTD, MMC, CZ, RA, MMC, MLN, and IM. Investigation: MJMG, MMV, SVV, IC, AHL, VM, MV, AM, OC, SR, MMF, MLN, and IM. Data analysis and interpretation: MJMG, SR, and IM. Supervision and visualization: MLN, SR, and IM. Funding acquisition: SR, MAMF, and MLN.

Drafting the article: MJMG, SR, and IM. Critical revision of the article: MMV, DSC, VM, and MLN. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Salvador Resino or Isidoro Martinez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. The funding sources played no role in the study's design, collection, analysis, interpretation of the data, or manuscript writing.

Ethical approval and consent to participate

The HGUGM Ethics Committee approved the study (Ref.: IRB 00006051), which was conducted following the Declaration of Helsinki. All participants gave their informed consent before enrollment.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 400 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Gómez, M.J., Martin-Vicente, M., Vigil-Vazquez, S. et al. IgG antibody levels against the SARS-CoV-2 spike protein in mother–child dyads after COVID-19 vaccination. Infection (2023). https://doi.org/10.1007/s15010-023-02111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s15010-023-02111-x

Keywords

Navigation