Skip to main content
Log in

Transcranial brain parenchyma sonography in patients with juvenile myoclonic epilepsy

  • Research
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Introduction

There are rising evidences that subcortical structures, including the basal ganglia, are affected in patients with epilepsy. These structures are thought to influence the modulation and phenotypic expression of epileptic seizures. Our study aimed to evaluate the presence of structural abnormalities in subcortical structures in patients with juvenile myoclonic epilepsy (JME).

Methods

This cross-sectional study included 51 patients who were diagnosed with JME and who were monitored on an outpatient basis at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade from January 1985 to October 2017. All patients underwent transcranial parenchymal sonography (TCS) from October 2015 to October 2017. Relation of clinical parameters (seizure control andcognitive functioning,) with TCS results was assessed.

Results

Hyperechogenicity of the substantia nigra (SN) was detected in 37.2% of JME subjects and it was significantly more common in patients with JME than in the control group. The marked echogenicity of the red nucleus (RN) was detected in 17.6% of cases, while 11.8% of subjects had hyperechogenic RN. The presence of hyperechogenic RN (both right and left) was significantly more frequent in the group of patients with JME compared to the control group. The third ventricle diameter was larger in patients with JME than in controls.

Conclusion

Structural changes of certain subcortical structures, primarily SN and RN, detected in JME patients indicate additional non-lesional abnormalities of the basal ganglia and midbrain structures in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request from the corresponding author. The data are not publicly available due to concerns regarding the privacy of study participants.

References

  1. Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399. https://doi.org/10.1111/j.1528-1157.1989.tb05316.x

    Article  Google Scholar 

  2. Crespel A, Gelisse P, Reed RC, Ferlazzo E, Jerney J, Schmitz B, Genton P (2013) Management of juvenile myoclonic epilepsy. Epilepsy Behav 28(Suppl 1):S81-86. https://doi.org/10.1016/j.yebeh.2013.01.001

    Article  PubMed  Google Scholar 

  3. Genton P, Thomas P, Kasteleijn-Nolst Trenité DGA, Medina MT, Salas-Puig J (2013) Clinical aspects of juvenile myoclonic epilepsy. Epilepsy Behav 28(Suppl 1):S8-14. https://doi.org/10.1016/j.yebeh.2012.10.034

    Article  PubMed  Google Scholar 

  4. Baykan B, Peter Wolf P (2017) Juvenile myoclonic epilepsy as a spectrum disorder: a focused review. Seizure 49:36–41. https://doi.org/10.1016/j.seizure.2017.05.011

    Article  PubMed  Google Scholar 

  5. Saini J, Sinha S, Bagepally BS, Ramchandraiah CT, Thennarasu K, Prasad C, Taly AB, Satishchandra P (2013) Subcortical structural abnormalities in juvenile myoclonic epilepsy (JME): MR volumetry and vertex based analysis. Seizure 22(3):230–235. https://doi.org/10.1016/j.seizure.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  6. Hattingen E, Lückerath C, Pellikan S, Vronski D, Roth C, Knake S, Kieslich M, Pilatus U (2014) Frontal and thalamic changes of GABA concentrationindicate dysfunction of thalamofrontal networks in juvenilemyoclonic epilepsy. Epilepsia 55(7):1030–1037. https://doi.org/10.1111/epi.12656

    Article  CAS  PubMed  Google Scholar 

  7. Landvogt C, Buchholz HG, Bernedo V, Schreckenberger M, Werhahn KJ (2010) Alteration of dopamine D2/D3 receptor binding in patients with juvenile myoclonic epilepsy. Epilepsia 51(9):1699–1706. https://doi.org/10.1111/j.1528-1167.2010.02569.x

    Article  CAS  PubMed  Google Scholar 

  8. Depaulis A, Moshé SL (2002) Editorial the basal ganglia and epilepsies: translating experimental concepts to new therapies. Epileptic Disord 4(Suppl 3):S7-8

    PubMed  Google Scholar 

  9. Slaght SJ, Paz T, Mahon S, Maurice N, Charpier S, Deniau JM (2002) Functional organisation of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy. Epileptic Disord 4(Suppl 3):S9-22

    PubMed  Google Scholar 

  10. Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7(11):1044–1055. https://doi.org/10.1016/S1474-4422(08)70239-4

    Article  PubMed  Google Scholar 

  11. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45(1):182–184. https://doi.org/10.1212/wnl.45.1.182

    Article  CAS  PubMed  Google Scholar 

  12. Behnke S, Berg D, Naumann M, Becker G (2005) Differentiation of parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry 76(3):423–425. https://doi.org/10.1136/jnnp.2004.049221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berg D (2011) Hyperechogenicity of the substantia nigra: pitfalls in assessment and specificity for parkinson’s disease. J Neural Transm (Vienna) 118(3):453–461. https://doi.org/10.1007/s00702-010-0469-5

    Article  CAS  PubMed  Google Scholar 

  14. Mijajlović M, Petrović I, Stojković T, Svetel M, Stefanova E, Kostić VS (2008) [Transcranial parenchymal sonography in the diagnosis of parkinson’s disease]. Vojnosanit Pregl 65(8):601–605. https://doi.org/10.2298/vsp0808601m. (Serbian)

    Article  PubMed  Google Scholar 

  15. Mijajlovic MD (2010) Transcranial sonography in depression. Int Rev Neurobiol 90:259–272. https://doi.org/10.1016/S0074-7742(10)90018-4

    Article  PubMed  Google Scholar 

  16. Krogias C, Walter U (2016) Transcranial sonography findings in depression in association with psychiatric and neurologic diseases: a review. J Neuroimaging 26(3):257–263. https://doi.org/10.1111/jon.12328

    Article  PubMed  Google Scholar 

  17. Şenel B, Özel-Kızıl ET, Sorgun MH, Tezcan-Aydemir S, Kırıcı S (2020) Transcranial sonography imaging of brainstem raphe, substantia nigra and cerebral ventricles in patients with geriatric depression. Int J Geriatr Psychiatry 35(7):702–711. https://doi.org/10.1002/gps.5287

    Article  PubMed  Google Scholar 

  18. Walter U, Krolikowski K, Tarnacka B, Benecke R, Czlonkowska A, Dressler D (2005) Sonographic detection of basal ganglia lesions in asymptomatic and symptomatic Wilson disease. Neurology 64(10):1726–1732. https://doi.org/10.1212/01.WNL.0000161847.46465.B9

    Article  CAS  PubMed  Google Scholar 

  19. Svetel M, Mijajlović M, Tomić A, Kresojević N, Pekmezović T, Kostić VS (2012) Transcranial sonography in Wilson’s disease. Parkinsonism Relat Disord 18(3):234–238. https://doi.org/10.1016/j.parkreldis.2011.10.007

    Article  PubMed  Google Scholar 

  20. Mijajlović M, Dragasević N, Stefanova E, Petrović I, Svetel M, Kostić VS (2008) Transcranial sonography in spinocerebellar ataxia type 2. J Neurol 255(8):1164–1167. https://doi.org/10.1007/s00415-008-0862-2

    Article  PubMed  Google Scholar 

  21. Lezak MD, Howieson DB, Bigler ED, Tranel D (2012) Neuropsychological Assessment, 5th edn. Oxford University Press

    Google Scholar 

  22. Tombaugh TN (2004) Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 19(2):203–214. https://doi.org/10.1016/S0887-6177(03)00039-8

    Article  PubMed  Google Scholar 

  23. Golden CJ (2004) The Adult Luria-Nebraska Neuropsychological Battery. In: Goldstein G, Beers SR, Hersen M (eds) Comprehensive handbook of psychological assessment, intellectual and neuropsychological assessment, vol 1. John Wiley & Sons Inc, Hoboken, NJ, US, pp 133–146

    Google Scholar 

  24. Walter U, Školoudík D (2004) Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards, diagnostic applications and novel technologies. Ultraschall Med 35(4):322–331. https://doi.org/10.1055/s-0033-1356415

    Article  Google Scholar 

  25. Godau J, Wevers AK, Gaenslen A, Di Santo A, Liepelt I, Gasser T, Berg D (2008) Sonographic abnormalities of brainstem structures in restless legs syndrome. Sleep Med 9(7):782–789. https://doi.org/10.1016/j.sleep.2007.09.001

    Article  PubMed  Google Scholar 

  26. Raatikainen M, Kälviäinen R, Jutila L, Äikiä M (2020) Cognitive functioning in new-onset juvenile myoclonic epilepsy. Epilepsy Behav 106:107015. https://doi.org/10.1016/j.yebeh.2020.107015

    Article  PubMed  Google Scholar 

  27. Camfield CS, Striano P, Camfield PR (2013) Epidemiology of juvenile myoclonic epilepsy. Epilepsy Behav 28(Suppl 1):S15–S17. https://doi.org/10.1016/j.yebeh.2012.06.024

    Article  PubMed  Google Scholar 

  28. Jovic N (2012) Frontal lobe dysfunctions in patients with juvenile myoclonic epilepsy. J Ped Epilepsy 2:77–85

    Google Scholar 

  29. Vuong J, Devergnas A (2018) The role of the basal ganglia in the control of seizure. J Neural Transm (Vienna) 125(3):531–545. https://doi.org/10.1007/s00702-017-1768-x

    Article  CAS  PubMed  Google Scholar 

  30. Kim JH, Kim JB, Suh S, Kim DW (2017) Subcortical grey matter changes in juvenile myoclonic epilepsy. Neuroimage Clin 17:397–404. https://doi.org/10.1016/j.nicl.2017.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Trinka E, Kienpointner G, Unterberger I, Luef G, Bauer G, Doering LB, Doering S (2006) Psychiatric comorbidity in juvenile myoclonic epilepsy. Epilepsia 47(12):2086–2091. https://doi.org/10.1111/j.1528-1167.2006.00828.x

    Article  PubMed  Google Scholar 

  32. Filho GM, Rosa VP, Lin K, Caboclo LO, Sakamoto AC, Yacubian EM (2008) Psychiatric comorbidity in epilepsy: a study comparing patients with mesial temporal sclerosis and juvenile myoclonic epilepsy. Epilepsy Behav 13(1):196–201. https://doi.org/10.1016/j.yebeh.2008.01.008

    Article  PubMed  Google Scholar 

  33. Iadarola MJ, Gale K (1982) Substantia nigra: site of anticonvulsant activity mediated by g-aminobutyric acid. Science 218(4578):1237–1240. https://doi.org/10.1126/science.7146907

    Article  CAS  PubMed  Google Scholar 

  34. Velísková J, Moshé SL (2006) Update on the role of substantia nigra pars reticulata in the regulation of seizures. Epilepsy Curr 6(3):83–87. https://doi.org/10.1111/j.1535-7511.2006.00106.x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Albala BJ, Moshé SL, Okada R (1984) Kainic-acid-induced seizures: a developmental study. Dev Brain Res 315(1):139–148. https://doi.org/10.1016/0165-3806(84)90085-3

    Article  CAS  Google Scholar 

  36. Ben-Ari Y, Tremblay E, Riche D, Ghilini G, Naquet R (1981) Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6(7):1361–1391. https://doi.org/10.1016/0306-4522(81)90193-7

    Article  CAS  PubMed  Google Scholar 

  37. Chen B, Xu C, Wang Y, Lin W, Wang Y, Chen L, Cheng H, Xu L, Hu T, Zhao J, Dong P, Guo Y, Zhang S, Wang S, Zhou Y, Hu W, Duan S, Chen Z (2020) A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat Commun 11(1):923. https://doi.org/10.1038/s41467-020-14648-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Velísková J, Miller AM, Nunes ML, Brown LL (2005) Regional neural activity within the substantia nigra during peri-ictal flurothyl generalized seizure stages. Neurobiol Dis 20(3):752–759. https://doi.org/10.1016/j.nbd.2005.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sperber EF, Wurpel JND, Zhao DY, Moshé SL (1989) Evidence for the involvement of nigral GABAa receptors in seizures of adult rats. Brain Res 480(1–2):378–382. https://doi.org/10.1016/0006-8993(89)90211-4

    Article  CAS  PubMed  Google Scholar 

  40. Ciumas C, Wahlin TB, Jucaite A, Lindstrom P, Halldin C, Savic I (2008) Reduced dopamine transporter binding in patients with juvenile myoclonic epilepsy. Neurology 71(11):788–794. https://doi.org/10.1212/01.wnl.0000316120.70504.d5

    Article  CAS  PubMed  Google Scholar 

  41. Habas C, Guillevin R, Abanou A (2010) In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum 9(2):167–173. https://doi.org/10.1007/s12311-009-0145-1

    Article  PubMed  Google Scholar 

  42. Lefebvre V, Josien E, Pasquier F, Steinling M, Petit H (1993) Infarctus du noyau rouge et diaschisis cérébelleux croisé. Rev Neurol (Paris) 149(4):294–296 (French)

    CAS  PubMed  Google Scholar 

  43. Kalnin AJ, Fastenau PS, deGrauw TJ, Musick BS, Perkins SM, Johnson CS, Mathews VP, Egelhoff JC, Dunn DW, Austin JK (2008) Magnetic resonance imaging findings in children with a first recognized seizure. Pediatr Neurol 39(6):404–414. https://doi.org/10.1016/j.pediatrneurol.2008.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jackson DC, Irwin W, Dabbs K, Lin JJ, Jones JE, Hsu DA, Stafstrom CE, Seidenberg M, Hermann BP (2011) Ventricular enlargement in new-onset pediatric epilepsies. Epilepsia 52(12):2225–2232. https://doi.org/10.1111/j.1528-1167.2011.03323.x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to our late Professor Nebojša Jović for his commitment, help and support in this work.

Funding

This work was granted by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia: 451-03-66/2024-03/200110.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by IDJ, SDJ, AK, DV, NIR, and MM. The first draft of the manuscript was written by IDJ and MŽ, MŽ and MM prepared figure 1 and all authors have commented on previous versions of the manuscript. The whole research was conceptualized and supervised by MM. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Milija Mijajlović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethic Committee of the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade (CNPCY 11/I-15).

Patient consent

Written informed consent was obtained from all participants or their parents/caregivers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djordjević, I., Djordjević, S., Kosać, A. et al. Transcranial brain parenchyma sonography in patients with juvenile myoclonic epilepsy. Acta Neurol Belg (2024). https://doi.org/10.1007/s13760-024-02561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13760-024-02561-6

Keywords

Navigation