Skip to main content

Advertisement

Log in

A new insight into the role of pericytes in ischemic stroke

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

The functional structure of the blood–brain barrier (BBB) deteriorates after stroke by developing diffuse microvascular and neurovascular dysfunction and loss of white matter integrity. This causes nervous tissue injury and causes sensory and motor disabilities in stroke patients. Improving the integrity of the BBB and neurovascular remodeling after stroke can promote post-stroke injury conditions. Pericytes are contractile cells abundant in the BBB and sandwiched between astrocytes and endothelial cells of the microvessels. Stroke could lead to the degeneration of pericytes in the BBB. However, recent evidence shows that promoting pericytes enhances BBB integrity and neurovascular remodeling. Furthermore, pericytes achieve multipotent properties under hypoxic conditions, allowing them to transdifferentiate into the brain resident cells such as microglia. Microglia regulate immunity and inflammatory response after stroke. The current review studies recent findings in the intervening mechanisms underlying the regulatory effect of pericytes in BBB recovery after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Maeda M, Fukuda H, Matsuo R, et al. (2021) Nationwide temporal trend analysis of reperfusion therapy utilization and mortality in acute ischemic stroke patients in Japan. Medicine 100(1).

  2. Montagne A, Nikolakopoulou AM, Zhao Z et al (2018) Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 24(3):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ngoc N, Thong N, and An N Thrombolysis and thrombectomy as an effective treatment for ischemic cerebral circulation disorders.

  4. Nowicki KW, Sekula RF Jr (2018) Pericytes Protect White-Matter Structure and Function. Neurosurgery 83(3):E103–E104

    Article  PubMed  Google Scholar 

  5. Özen I, Deierborg T, Miharada K et al (2014) Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol 128(3):381–396

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu Q, Radwanski R, Babadjouni R et al (2019) Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood–brain barrier permeability in the corpus callosum. J Cereb Blood Flow Metab 39(2):240–250

    Article  PubMed  Google Scholar 

  7. Liu S, Agalliu D, Yu C et al (2012) The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des 18(25):3653–3662

    Article  CAS  PubMed  Google Scholar 

  8. LeBlanc NJ, Guruswamy R, ElAli A (2018) Vascular endothelial growth factor isoform-B stimulates neurovascular repair after ischemic stroke by promoting the function of pericytes via vascular endothelial growth factor receptor-1. Mol Neurobiol 55(5):3611–3626

    CAS  Google Scholar 

  9. Gouveia A, Seegobin M, Kannangara TS et al (2017) The aPKC-CBP pathway regulates post-stroke neurovascular remodeling and functional recovery. Stem Cell Rep 9(6):1735–1744

    Article  CAS  Google Scholar 

  10. Ding R, Hase Y, Ameen-Ali K E, et al. (2020) Loss of capillary pericytes and the blood–brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathology.

  11. Shibahara T, Ago T, Nakamura K, et al. (2020) Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro 7(2).

  12. Sun J, Huang Y, Gong J et al (2020) Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun 11(1):1–20

    Google Scholar 

  13. Ogay V, Kumasheva V, Li Y et al (2020) Improvement of Neurological Function in Rats with Ischemic Stroke by Adipose-derived Pericytes. Cell Transplant 29:0963689720956956

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang Y, Yang L Y, Salayandia V M, et al. (2021) Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. Translational Stroke Research: p. 1–18.

  15. Deguchi K, Liu N, Liu W et al (2014) Pericyte protection by edaravone after tissue plasminogen activator treatment in rat cerebral ischemia. J Neurosci Res 92(11):1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gong C-X, Zhang Q, Xiong X-Y, et al. (2021) Pericytes Regulate Cerebral Perfusion through VEGFR1 in Ischemic Stroke. Cellular and Molecular Neurobiology: p. 1–12.

  17. Zhang Y, Zhang X, Wei Q et al (2020) Activation of sigma-1 receptor enhanced pericyte survival via the interplay between apoptosis and autophagy: implications for blood–brain barrier integrity in stroke. Transl Stroke Res 11(2):267–287

    Article  CAS  PubMed  Google Scholar 

  18. Roth M, Enström A, Aghabeick C et al (2020) Parenchymal pericytes are not the major contributor of extracellular matrix in the fibrotic scar after stroke in male mice. J Neurosci Res 98(5):826–842

    Article  CAS  PubMed  Google Scholar 

  19. Heyba M, Al-Abdullah L, Henkel AW et al (2019) Viability and Contractility of Rat Brain Pericytes in Conditions That Mimic Stroke; an in vitro Study. Front Neurosci 13:1306

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakamura K, Ikeuchi T, Zhang P, et al. (2018) Abstract WMP117: Perlecan Regulates Pericyte Dynamics in the Repair Process of the Blood-Brain Barrier Against Ischemic Stroke. Stroke 49(Suppl_1): p. AWMP117-AWMP117.

  21. Nakamura K, Ikeuchi T, Zhang P, et al. (2017) Abstract TP276: Perlecan Is Required for the Maintenance of the Blood-Brain Barrier through the Interaction with Pericytes in a Mouse Ischemic Stroke Model. Stroke 48(suppl_1): p. ATP276-ATP276.

  22. Jiang X, Andjelkovic AV, Zhu L et al (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163:144–171

    Article  PubMed  Google Scholar 

  23. Weber RZ, Grönnert L, Mulders G et al (2020) Characterization of the blood brain barrier disruption in the photothrombotic stroke model. Front Physiol 11:1493

    Article  Google Scholar 

  24. Özen I, Roth M, Barbariga M et al (2018) Loss of regulator of G-protein signaling 5 leads to neurovascular protection in stroke. Stroke 49(9):2182–2190

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y-F, Li P-C, Wu J-H et al (2018) Sema3E/PlexinD1 inhibition is a therapeutic strategy for improving cerebral perfusion and restoring functional loss after stroke in aged rats. Neurobiol Aging 70:102–116

    Article  CAS  PubMed  Google Scholar 

  26. Nikolakopoulou AM, Montagne A, Kisler K et al (2019) Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci 22(7):1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang E, Cai Y, Yao X et al (2019) Tissue plasminogen activator disrupts the blood-brain barrier through increasing the inflammatory response mediated by pericytes after cerebral ischemia. Aging (Albany NY) 11(22):10167

    Article  CAS  PubMed  Google Scholar 

  28. Ronaldson P T and Davis T P (2020) Regulation of blood–brain barrier integrity by microglia in health and disease: a therapeutic opportunity. Journal of Cerebral Blood Flow & Metabolism 40(1_suppl): p. S6-S24.

  29. Sakuma R, Kawahara M, Nakano-Doi A, et al. (2016) Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. Journal of neuroinflammation 13(1): p. 1–13.

  30. Bhat S, Ljubojevic N, Zhu S et al (2020) Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci Rep 10(1):1–14

    Article  Google Scholar 

  31. Pisani F, Castagnola V, Simone L et al (2022) Role of pericytes in blood–brain barrier preservation during ischemia through tunneling nanotubes. Cell Death Dis 13(7):1–14

    Article  Google Scholar 

  32. Yao Y, Zhang Y, Liao X et al (2021) Potential therapies for cerebral edema after ischemic stroke: a mini review. Frontiers in Aging Neuroscience 12:618819

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rungta RL, Choi HB, Tyson JR et al (2015) The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 161(3):610–621

    Article  CAS  PubMed  Google Scholar 

  34. Liebeskind DS, Jüttler E, Shapovalov Y et al (2019) Cerebral edema associated with large hemispheric infarction: implications for diagnosis and treatment. Stroke 50(9):2619–2625

    Article  PubMed  Google Scholar 

  35. Stokum JA, Gerzanich V, Simard JM (2016) Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 36(3):513–538

    Article  CAS  PubMed  Google Scholar 

  36. Parrella E, Porrini V, Benarese M et al (2019) The role of mast cells in stroke. Cells 8(5):437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han W, Song Y, Rocha M, et al. (2023) Ischemic brain edema: Emerging cellular mechanisms and therapeutic approaches. Neurobiology of Disease: p. 106029.

  38. Dalkara T, Gursoy-Ozdemir Y, Yemisci M (2011) Brain microvascular pericytes in health and disease. Acta Neuropathol 122:1–9

    Article  PubMed  Google Scholar 

  39. Castejón O (1984) Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema. J Submicrosc Cytol 16(3):601–618

    PubMed  Google Scholar 

  40. Castejón OJ (2011) Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema. Folia Neuropathol 49(3):162–173

    PubMed  Google Scholar 

  41. Hasan M, Glees P (1990) The fine structure of human cerebral perivascular pericytes and juxtavascular phagocytes: their possible role in hydrocephalic edema resolution. J Hirnforsch 31(2):237–249

    CAS  PubMed  Google Scholar 

  42. Hatakeyama M, Ninomiya I, Kanazawa M (2020) Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res 15(1):16

    Article  PubMed  Google Scholar 

  43. Winkler EA, Birk H, Burkhardt J-K et al (2018) Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J Neurosurg 129(6):1464–1474

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leligdowicz A, Richard-Greenblatt M, Wright J, et al., Endothelial activation: The Ang/Tie axis in sepsis. Front Immunol 2018; 9: 838. 2018, PUBMED.

  45. Gong C-X, Zhang Q, Xiong X-Y et al (2022) Pericytes regulate cerebral perfusion through VEGFR1 in ischemic stroke. Cell Mol Neurobiol 42(6):1897–1908

    Article  CAS  PubMed  Google Scholar 

  46. Shibahara T, Ago T, Tachibana M et al (2020) Reciprocal Interaction Between Pericytes and Macrophage in Poststroke Tissue Repair and Functional Recovery. Stroke 51(10):3095–3106

    Article  CAS  PubMed  Google Scholar 

  47. Lambertsen KL, Deierborg T, Gregersen R et al (2011) Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 70(6):481–494

    Article  PubMed  Google Scholar 

  48. Krautler NJ, Kana V, Kranich J et al (2012) Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150(1):194–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balabanov R, Washington R, Wagnerova J et al (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvasc Res 52(2):127–142

    Article  CAS  PubMed  Google Scholar 

  50. Arimura K, Ago T, Kamouchi M et al (2012) PDGF receptor β signaling in pericytes following ischemic brain injury. Curr Neurovasc Res 9(1):1–9

    Article  CAS  PubMed  Google Scholar 

  51. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Etchevers HC, Vincent C, Le Douarin NM et al (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128(7):1059–1068

    Article  CAS  PubMed  Google Scholar 

  53. Sakuma R, Kawahara M, Nakano-Doi A et al (2016) Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation 13(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nirwane A, Yao Y (2022) SMA(low/undetectable) pericytes differentiate into microglia- and macrophage-like cells in ischemic brain. Cell Mol Life Sci 79(5):264

    Article  CAS  PubMed  Google Scholar 

  55. Mariana M, Roque C, Baltazar G, et al. (2021) In vitro model for ischemic stroke: functional analysis of vascular smooth muscle cells. Cellular and molecular neurobiology: p. 1–16.

  56. Paul D, Cowan AE, Ge S et al (2013) Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res 86:1–10

    Article  CAS  PubMed  Google Scholar 

  57. Cheng J, Korte N, Nortley R et al (2018) Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136(4):507–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Isola G, Polizzi A, Ronsivalle V et al (2021) Impact of matrix metalloproteinase-9 during periodontitis and cardiovascular diseases. Molecules 26(6):1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cai W, Liu H, Zhao J et al (2017) Pericytes in brain injury and repair after ischemic stroke. Transl Stroke Res 8(2):107–121

    Article  CAS  PubMed  Google Scholar 

  60. Taskiran-Sag A, Yemisci M, Gursoy-Ozdemir Y et al (2018) Improving microcirculatory reperfusion reduces parenchymal oxygen radical formation and provides neuroprotection. Stroke 49(5):1267–1275

    Article  CAS  PubMed  Google Scholar 

  61. Yemisci M, Gursoy-Ozdemir Y, Vural A et al (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15(9):1031–1037

    Article  CAS  PubMed  Google Scholar 

  62. Gürler G, Soylu KO, Yemisci M (2022) Importance of pericytes in the pathophysiology of cerebral ischemia. Archives of Neuropsychiatry 59(Suppl 1):S29

    PubMed  PubMed Central  Google Scholar 

  63. Locatelli M, Padovani A, Pezzini A (2020) Pathophysiological mechanisms and potential therapeutic targets in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Front Pharmacol 11:321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding R, Hase Y, Ameen-Ali KE et al (2020) Loss of capillary pericytes and the blood–brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol 30(6):1087–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun J, Huang Y, Gong J et al (2020) Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun 11(1):5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakagomi T, Kubo S, Nakano‐Doi A, et al. (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem cells 33(6): p. 1962–1974.

Download references

Author information

Authors and Affiliations

Authors

Contributions

FS searched the literature and drafted the manuscript. FS, TG, AE, MHG, and LH critically revised the manuscript. All authors have made contributions to the work and approved it for publication.

Corresponding author

Correspondence to Leila Hosseini.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

This item is not applicable for this review study.

Informed consent

This item is not applicable for this review study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedaghamiri, F., Geranmayeh, M.H., Ghadiri, T. et al. A new insight into the role of pericytes in ischemic stroke. Acta Neurol Belg (2023). https://doi.org/10.1007/s13760-023-02391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13760-023-02391-y

Keywords

Navigation