Skip to main content

Advertisement

Log in

Temporal lobe atrophy as a potential predictor of functional outcome in older adults with acute ischemic stroke

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Background

To explore whether temporal lobe atrophy predicts 3-month functional outcome in a population of patients with anterior circulation acute ischemic stroke (AIS) treated with mechanical thrombectomy (MT).

Methods

We retrospectively selected patients > 65 years from our prospective endovascular stroke registry between June 2013 and August 2018. According to 3-month modified Rankin Scale (mRS), patients were divided in two groups, named good (mRS ≤ 2) and poor (mRS > 2) outcome. Measures of temporal lobe atrophy (i.e., interuncal distance [IUD], medial temporal lobe thickness [mTLT] and radial width of temporal horn [rWTH]) were assessed on pre-treatment CT scan. Cutoff values for good outcome were obtained for IUD, mTLT and rWTH by means of non-parametric ROC curve analysis. Multivariate analysis was performed to identify predictors of outcome. Ordinal shift analysis based on cutoff values was built to evaluate differences in 3-month mRS.

Results

Among 340 patients, 130 (38.2%) had good and 210 (61.8%) had poor outcome. We found the following cutoff values for good outcome: < 25 mm for IUD, > 15 mm for mTLT and < 4 mm for rWTH. Lower IUD (OR 0.71; 95% CI 0.63–0.80; p < 0.0001) and rWTH (OR 0.73; 95% CI 0.61–0.87; p < 0.0001) and higher mTLT (OR 1.30; 95% CI 1.14–1.49; p < 0.0001) were independently associated with good outcome. Ordinal shift analysis based on cutoff values revealed significant differences in the rate of good outcome for rWTH (49 vs 27%; p < 0.0001), mTLT (52 vs 21%; p < 0.0001) and IUD (57 vs 17%; p < 0.0001).

Conclusions

Assessment of temporal lobe atrophy may predict functional outcome in patients with AIS treated with MT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from any qualified investigator.

References

  1. Berkhemer OA et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372(1):11–20

    Article  PubMed  Google Scholar 

  2. Goyal M et al (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1019–1030

    Article  CAS  PubMed  Google Scholar 

  3. Saver JL et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372(24):2285–2295

    Article  CAS  PubMed  Google Scholar 

  4. Nogueira RG et al (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378(1):11–21

    Article  PubMed  Google Scholar 

  5. Albers GW et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378(8):708–718

    Article  PubMed  PubMed Central  Google Scholar 

  6. van den Berg LA et al (2017) Two-year outcome after endovascular treatment for acute ischemic stroke. N Engl J Med 376(14):1341–1349

    Article  PubMed  Google Scholar 

  7. Sallustio F et al (2019) Selection of anterior circulation acute stroke patients for mechanical thrombectomy. J Neurol 266(11):2620–2628

    Article  PubMed  Google Scholar 

  8. Wakisaka Y et al (2017) Adverse influence of pre-stroke dementia on short-term functional outcomes in patients with acute ischemic stroke: the Fukuoka stroke registry. Cerebrovasc Dis 43(1–2):82–89

    Article  PubMed  Google Scholar 

  9. Powers WJ et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 50(12):e344–e418

    Article  PubMed  Google Scholar 

  10. Ouchi Y et al (2017) Redefining the elderly as aged 75 years and older: proposal from the joint committee of japan gerontological society and the japan geriatrics society. Geriatr Gerontol Int 17(7):1045–1047

    Article  PubMed  Google Scholar 

  11. Drayer BP (1988) Imaging of the aging brain Part I normal findings. Radiology 166(3):785–796

    Article  CAS  PubMed  Google Scholar 

  12. Frodl T et al (2006) Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J Psychiatry Neurosci 31(5):316–325

    PubMed  PubMed Central  Google Scholar 

  13. Nickl-Jockschat T et al (2012) Neuroanatomic changes and their association with cognitive decline in mild cognitive impairment: a meta-analysis. Brain Struct Funct 217(1):115–125

    Article  PubMed  Google Scholar 

  14. Leandrou S, Lamnisos D, Mamais I, Kyriacou PA, Pattichis CS, Alzheimer’s Disease and Neuroimaging Initiative (2020) Assessment of Alzheimer’s disease based on texture analysis of the entorhinal cortex. Front Aging Neurosci. 2(12):176

    Article  Google Scholar 

  15. Fein G et al (2000) Hippocampal and cortical atrophy predict dementia in subcortical ischemic vascular disease. Neurology 55(11):1626–1635

    Article  CAS  PubMed  Google Scholar 

  16. Elkins JS, Longstreth WT Jr, Manolio TA, Newman AB, Bhadelia RA, Johnston SC (2006) Education and the cognitive decline associated with MRI-defined brain infarct. Neurology 67(3):435–440

    Article  CAS  PubMed  Google Scholar 

  17. Mok VCT, Lam BYK, Wong A, Ko H, Markus HS, Wong LKS (2017) Early-onset and delayed-onset poststroke dementia—revisiting the mechanisms. Nat Rev Neurol 13(3):148–159

    Article  PubMed  Google Scholar 

  18. Gemmell E, Bosomworth H, Allan L et al (2011) Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke 43(3):808–814

    Article  PubMed  Google Scholar 

  19. Kliper E, Bashat DB, Bornstein NM et al (2013) Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume. Stroke 44(5):1433–1435

    Article  CAS  PubMed  Google Scholar 

  20. Hénon H, Pasquier F, Durieu I, Pruvo JP, Leys D (1998) Medial temporal lobe atrophy in stroke patients: relation to pre-existing dementia. J Neurol Neurosurg Psychiatry 65(5):641–647

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pirson FAV et al (2022) Endovascular treatment for posterior circulation stroke in routine clinical practice: results of the multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands registry. Stroke 53(3):758–768

    Article  PubMed  Google Scholar 

  22. Adams HP Jr et al (1993) Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial: TOAST: trial of org 10172 in acute stroke treatment. Stroke 24:35–41

    Article  PubMed  Google Scholar 

  23. Pexman JH et al (2001) Use of the Alberta stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol 22(8):1534–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sallustio F et al (2017) CT angiography ASPECTS predicts outcome much better than noncontrast CT in patients with stroke treated endovascularly. AJNR Am J Neuroradiol 38(8):1569–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sallustio F et al (2017) CT angiography-based collateral flow and time to reperfusion are strong predictors of outcome in endovascular treatment of patients with stroke. J Neurointerv Surg. 9(10):940–943

    Article  PubMed  Google Scholar 

  26. Tan IY et al (2009) CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol 30(3):525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Swieten JC, Hijdra A, Koudstaal PJ, van Gijn J (1990) Grading white matter lesions on CT and MRI: a simple scale. J Neurol Neurosurg Psychiatry 53(12):1080–1083

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hacke W et al (1998) Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian acute stroke study investigators. Lancet 352(9136):1245–1251

    Article  CAS  PubMed  Google Scholar 

  29. Dahlbeck SW et al (1991) The interuncal distance: a new MR measurement for the hippocampal atrophy of Alzheimer disease. AJNR Am J Neuroradiol 12(5):931–932

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Denihan A, Wilson G, Cunningham C, Coakley D, Lawlor BA (2000) CT measurement of medial temporal lobe atrophy in Alzheimer’s disease, vascular dementia, depression and paraphrenia. Int J Geriatr Psychiatry 15(4):306–312

    Article  CAS  PubMed  Google Scholar 

  31. Frisoni GB et al (2002) Radial width of the temporal horn: a sensitive measure in Alzheimer disease. AJNR Am J Neuroradiol 23(1):35–47

    PubMed  PubMed Central  Google Scholar 

  32. Kant IMJ et al (2018) The association between brain volume, cortical brain infarcts, and physical frailty. Neurobiol Aging 70:247–253

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qu JF, Chen Y, Zhong HH, Li W, Lu ZH (2019) Preexisting cerebral abnormalities and functional outcomes after acute ischemic stroke. J Geriatr Psychiatry Neurol 32(6):327–335

    Article  PubMed  Google Scholar 

  34. Pedraza MI et al (2020) Brain atrophy and the risk of futile endovascular reperfusion in acute ischemic stroke. Stroke 51(5):1514–1521

    Article  PubMed  Google Scholar 

  35. Olesen PJ et al (2011) A population-based study on the influence of brain atrophy on 20-year survival after age 85. Neurology 76:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lauksio I et al (2020) Brain atrophy predicts mortality after mechanical thrombectomy of proximal anterior circulation. J Neurointerv Surg. https://doi.org/10.1136/neurintsurg-2020-016168

    Article  PubMed  Google Scholar 

  37. Gilberti N et al (2017) Leukoaraiosis is a predictor of futile recanalization in acute ischemic stroke. J Neurol 264(3):448–452

    Article  PubMed  Google Scholar 

  38. Stern Y et al (2020) Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement 16(9):1305–1311

    Article  PubMed  Google Scholar 

  39. Umarova RM et al (2019) Cognitive reserve impacts on disability and cognitive deficits in acute stroke. J Neurol 266(10):2495–2504

    Article  PubMed  Google Scholar 

  40. Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11):1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  41. Steffener J, Reuben A, Rakitin BC, Stern Y (2011) Supporting performance in the face of age-related neural changes: testing mechanistic roles of cognitive reserve. Brain Imaging Behav 5(3):212–221

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mungas D, Gavett B, Fletcher E, Farias ST, DeCarli C, Reed B (2018) Education amplifies brain atrophy effect on cognitive decline: implications for cognitive reserve. Neurobiol Aging 68:142–150

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lapergue B et al (2017) Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. JAMA 318:443–452

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duara R et al (2008) Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 71(1986–1992):50

    Google Scholar 

  45. Diprose WK, Diprose JP, Wang MTM, Tarr GP, McFetridge A, Barber PA (2019) Automated measurement of cerebral atrophy and outcome in endovascular thrombectomy. Stroke 50:3636–3638

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Sallustio.

Ethics declarations

Conflict of interest

The authors report no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallustio, F., Mascolo, A.P., Marrama, F. et al. Temporal lobe atrophy as a potential predictor of functional outcome in older adults with acute ischemic stroke. Acta Neurol Belg 123, 1291–1299 (2023). https://doi.org/10.1007/s13760-022-02167-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-022-02167-w

Keywords

Navigation