Skip to main content

Advertisement

Log in

Pemphigus for the Inpatient Dermatologist

  • Hospital-Based Dermatology (L Guggina and C Nguyen, Section Editors)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although detailed guidelines exist for the general treatment of pemphigus, reviews specific to inpatient management are sparse. This paper will seek to provide a comprehensive and centralized guide for the treatment of this disease by the inpatient dermatologist.

Recent Findings

Important recent findings include the demonstrated efficacy of rituximab as a first-line agent in pemphigus and its approval by the FDA for the treatment of moderate-to-severe pemphigus in adults in 2018.

Summary

Optimal care for pemphigus in the hospital requires a multi-disciplinary approach, which factors in specific qualities of each patient to develop the proper medication regimen and treatment plan. In addition, proper wound and oral care, diet, and prophylaxis against potential complications are all crucial to timely and appropriate discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Zenzo G, et al. Immune response in pemphigus and beyond: progresses and emerging concepts. Semin Immunopathol. 2016;38(1):57–74.

    Article  Google Scholar 

  2. Amber KT, Valdebran M, Grando SA. Non-desmoglein antibodies in patients with pemphigus vulgaris. Front Immunol. 2018;9:1190.

    Article  Google Scholar 

  3. Hassona Y, et al. Diagnostic patterns and delays in autoimmune blistering diseases of the mouth: a cross-sectional study. Oral Dis. 2018;24(5):802–8.

    Article  CAS  Google Scholar 

  4. Hsu D, Brieva J, Silverberg JI. Costs of care for hospitalization for pemphigus in the United States. JAMA Dermatol. 2016;152(6):645–54.

    Article  Google Scholar 

  5. Joly P, et al. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J Eur Acad Dermatol Venereol. 2020;34(9):1900–13.

    Article  CAS  Google Scholar 

  6. Santoro FA, Stoopler ET, Werth VP. Pemphigus. Dent Clin North Am. 2013;57(4):597–610.

    Article  Google Scholar 

  7. Ghaedi F, et al. Drug-induced pemphigus: a systematic review of 170 patients. Int Immunopharmacol. 2021;92: 107299.

    Article  CAS  Google Scholar 

  8. Yuan PY, et al. Experience in the diagnosis and treatment of a drug-induced pemphigus. Hua Xi Kou Qiang Yi Xue Za Zhi. 2021;39(6):724–7.

    Google Scholar 

  9. Lee CW, Lim JH, Kang HJ. Pemphigus foliaceus induced by rifampicin. Br J Dermatol. 1984;111(5):619–22.

    Article  CAS  Google Scholar 

  10. Trotta F, et al. Thiopronine-induced pemphigus vulgaris in rheumatoid arthritis. Scand J Rheumatol. 1984;13(1):93–5.

    Article  CAS  Google Scholar 

  11. Civatte J. Drug-induced pemphigus diseases. Dermatol Monatsschr. 1989;175(1):1–7.

    CAS  Google Scholar 

  12. Hebert V, et al. Large international validation of ABSIS and PDAI pemphigus severity scores. J Invest Dermatol. 2019;139(1):31–7.

    Article  CAS  Google Scholar 

  13. Murrell DF, et al. Diagnosis and management of pemphigus: recommendations of an international panel of experts. J Am Acad Dermatol. 2020;82(3):575–585 e1.

  14. Elston DM, Stratman EJ, Miller SJ. Skin biopsy: biopsy issues in specific diseases. J Am Acad Dermatol. 2016;74(1):1–16; quiz 17–8.

  15. Baum S, et al. Relationship between pemphigus vulgaris severity and PCR-positive herpes simplex virus. Acta Derm Venereol. 2022.

  16. Marano AL, Cardones AR, Hall RP. Inpatient management of autoimmune blistering diseases: an update, review, and practical guide. Current Dermatology Reports. 2019;8(4):208–18.

    Article  Google Scholar 

  17. Chryssomallis F, et al. Steroid-pulse therapy in pemphigus vulgaris long term follow-up. Int J Dermatol. 1995;34(6):438–42.

    Article  CAS  Google Scholar 

  18. Werth VP. Treatment of pemphigus vulgaris with brief, high-dose intravenous glucocorticoids. Arch Dermatol. 1996;132(12):1435–9.

    Article  CAS  Google Scholar 

  19. Erstad BL. Severe cardiovascular adverse effects in association with acute, high-dose corticosteroid administration. DICP. 1989;23(12):1019–23.

    Article  CAS  Google Scholar 

  20. Chiappini B, El Khoury G. Risk of atrial fibrillation with high-dose corticosteroids. Expert Opin Drug Saf. 2006;5(6):811–4.

    Article  CAS  Google Scholar 

  21. Vasheghani-Farahani A, et al. Incidence of various cardiac arrhythmias and conduction disturbances due to high dose intravenous methylprednisolone in patients with multiple sclerosis. J Neurol Sci. 2011;309(1–2):75–8.

    Article  CAS  Google Scholar 

  22. Wu J, Mackie SL, Pujades-Rodriguez M. Glucocorticoid dose-dependent risk of type 2 diabetes in six immune-mediated inflammatory diseases: a population-based cohort analysis. BMJ Open Diabetes Res Care. 2020;8(1).

  23. Cholera M, Chainani-Wu N. Management of pemphigus vulgaris. Adv Ther. 2016;33(6):910–58.

    Article  CAS  Google Scholar 

  24. Hooten J, Hall R 3rd, Cardones A. Updates on the management of autoimmune blistering diseases. Skin Therapy Lett. 2014;19(5):1–6.

    Google Scholar 

  25. Hsu DY, et al. Association of pemphigus and systemic corticosteroid use with comorbid health disorders: a case-control study. Dermatol Online J. 2017;23(12).

  26. Zhao W, et al. Comparison of guidelines for management of pemphigus: a review of systemic corticosteroids, rituximab, and other immunosuppressive Therapies. Clin Rev Allergy Immunol. 2021;61(3):351–62.

    Article  CAS  Google Scholar 

  27. Joly P, et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet. 2017;389(10083):2031–40.

    Article  CAS  Google Scholar 

  28. Murrell DF, Sprecher E. Rituximab and short-course prednisone as the new gold standard for new-onset pemphigus vulgaris and pemphigus foliaceus. Br J Dermatol. 2017;177(5):1143–4.

    Article  CAS  Google Scholar 

  29. Vinay K, et al. Rituximab as first-line adjuvant therapy for pemphigus: retrospective analysis of long-term outcomes at a single center. J Am Acad Dermatol. 2018;78(4):806–8.

    Article  Google Scholar 

  30. Eming R, et al. Rituximab exerts a dual effect in pemphigus vulgaris. J Invest Dermatol. 2008;128(12):2850–8.

    Article  CAS  Google Scholar 

  31. Herrmann G, Hunzelmann N, Engert A. Treatment of pemphigus vulgaris with anti-CD20 monoclonal antibody (rituximab). Br J Dermatol. 2003;148(3):602–3.

    Article  CAS  Google Scholar 

  32. Morrison LH. Therapy of refractory pemphigus vulgaris with monoclonal anti-CD20 antibody (rituximab). J Am Acad Dermatol. 2004;51(5):817–9.

    Article  Google Scholar 

  33. Saleh MA. A prospective study comparing patients with early and late relapsing pemphigus treated with rituximab. J Am Acad Dermatol. 2018;79(1):97–103.

    Article  CAS  Google Scholar 

  34. Albers LN, et al. Developing biomarkers for predicting clinical relapse in pemphigus patients treated with rituximab. J Am Acad Dermatol. 2017;77(6):1074–82.

    Article  CAS  Google Scholar 

  35. Amber KT, et al. Targeted therapies for autoimmune bullous diseases: current status. Drugs. 2018;78(15):1527–48.

    Article  Google Scholar 

  36. Lamberts A, et al. Effectiveness and safety of rituximab in recalcitrant pemphigoid diseases. Front Immunol. 2018;9:248.

    Article  Google Scholar 

  37. Amber KT, Hertl M. An assessment of treatment history and its association with clinical outcomes and relapse in 155 pemphigus patients with response to a single cycle of rituximab. J Eur Acad Dermatol Venereol. 2015;29(4):777–82.

    Article  CAS  Google Scholar 

  38. Tavakolpour S, et al. Sixteen-year history of rituximab therapy for 1085 pemphigus vulgaris patients: a systematic review. Int Immunopharmacol. 2018;54:131–8.

    Article  CAS  Google Scholar 

  39. Kanwar AJ, et al. Use of rituximab in pemphigus patients with chronic viral hepatitis: report of three cases. Indian J Dermatol Venereol Leprol. 2014;80(5):422–6.

    Article  Google Scholar 

  40. Loomba R, Liang TJ. Hepatitis B reactivation associated with immune suppressive and biological modifier therapies: current concepts, management strategies, and future directions. Gastroenterology. 2017;152(6):1297–309.

    Article  Google Scholar 

  41. Tsutsumi Y, et al. Hepatitis B virus reactivation with a rituximab-containing regimen. World J Hepatol. 2015;7(21):2344–51.

    Article  Google Scholar 

  42. Perrillo RP, Gish R, Falck-Ytter YT. American Gastroenterological Association Institute technical review on prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology. 2015;148(1):221–244 e3.

  43. Amber KT, et al. The controversy of hepatitis C and rituximab: a multidisciplinary dilemma with implications for patients with pemphigus. Indian J Dermatol Venereol Leprol. 2016;82(2):182–3.

    Article  Google Scholar 

  44. Rashid H, et al. The effectiveness of rituximab in pemphigus and the benefit of additional maintenance infusions: daily practice data from a retrospective study. J Am Acad Dermatol. 2020;83(5):1503–5.

    Article  CAS  Google Scholar 

  45. Kushner CJ, et al. Factors associated with complete remission after rituximab therapy for pemphigus. JAMA Dermatol. 2019;155(12):1404–9.

    Article  Google Scholar 

  46. Pollmann R, et al. Identification of autoreactive B cell subpopulations in peripheral blood of autoimmune patients with pemphigus vulgaris. Front Immunol. 2019;10:1375.

    Article  CAS  Google Scholar 

  47. Cho MJ, et al. Shared VH1-46 gene usage by pemphigus vulgaris autoantibodies indicates common humoral immune responses among patients. Nat Commun. 2014;5:4167.

    Article  CAS  Google Scholar 

  48. Lolis M, et al. Effect of intravenous immunoglobulin with or without cytotoxic drugs on pemphigus intercellular antibodies. J Am Acad Dermatol. 2011;64(3):484–9.

    Article  CAS  Google Scholar 

  49. Aoyama Y, et al. Catabolism of pemphigus foliaceus autoantibodies by high-dose IVIg therapy. Eur J Dermatol. 2011;21(1):58–61.

    Article  CAS  Google Scholar 

  50. Green MG, Bystryn JC. Effect of intravenous immunoglobulin therapy on serum levels of IgG1 and IgG4 antidesmoglein 1 and antidesmoglein 3 antibodies in pemphigus vulgaris. Arch Dermatol. 2008;144(12):1621–4.

    Article  CAS  Google Scholar 

  51. Czernik A, Beutner EH, Bystryn JC. Intravenous immunoglobulin selectively decreases circulating autoantibodies in pemphigus. J Am Acad Dermatol. 2008;58(5):796–801.

    Article  Google Scholar 

  52. Bystryn JC, Jiao D. IVIg selectively and rapidly decreases circulating pathogenic autoantibodies in pemphigus vulgaris. Autoimmunity. 2006;39(7):601–7.

    Article  CAS  Google Scholar 

  53. Sami N, Bhol KC, Ahmed RA. Influence of intravenous immunoglobulin therapy on autoantibody titers to desmoglein 3 and desmoglein 1 in pemphigus vulgaris. Eur J Dermatol. 2003;13(4):377–81.

    CAS  Google Scholar 

  54. Sami N, Bhol KC, Ahmed AR. Influence of IVIg therapy on autoantibody titers to desmoglein 1 in patients with pemphigus foliaceus. Clin Immunol. 2002;105(2):192–8.

    Article  CAS  Google Scholar 

  55. Aoyama Y, et al. Severe pemphigus vulgaris: successful combination therapy of plasmapheresis followed by intravenous high-dose immunoglobulin to prevent rebound increase in pathogenic IgG. Eur J Dermatol. 2008;18(5):557–60.

    Google Scholar 

  56. Yuan L, Haroz S, Franconeri S. Perceptual proxies for extracting averages in data visualizations. Psychon Bull Rev. 2019;26(2):669–76.

    Article  Google Scholar 

  57. Ahmed AR, Kaveri S, Spigelman Z. Long-term remissions in recalcitrant pemphigus vulgaris. N Engl J Med. 2015;373(27):2693–4.

    Article  Google Scholar 

  58. Amagai M, et al. A randomized double-blind trial of intravenous immunoglobulin for pemphigus. J Am Acad Dermatol. 2009;60(4):595–603.

    Article  Google Scholar 

  59. Ahmed AR. Intravenous immunoglobulin therapy in the treatment of patients with pemphigus vulgaris unresponsive to conventional immunosuppressive treatment. J Am Acad Dermatol. 2001;45(5):679–90.

    Article  CAS  Google Scholar 

  60. Ahmed AR, et al. First line treatment of pemphigus vulgaris with a novel protocol in patients with contraindications to systemic corticosteroids and immunosuppressive agents: preliminary retrospective study with a seven year follow-up. Int Immunopharmacol. 2016;34:25–31.

    Article  CAS  Google Scholar 

  61. Feldman RJ, Christen WG, Ahmed AR. Comparison of immunological parameters in patients with pemphigus vulgaris following rituximab and IVIG therapy. Br J Dermatol. 2012;166(3):511–7.

    Article  CAS  Google Scholar 

  62. Murrell DF, et al. Definitions and outcome measures for mucous membrane pemphigoid: recommendations of an international panel of experts. J Am Acad Dermatol. 2015;72(1):168–74.

    Article  Google Scholar 

  63. Grando SA. Retrospective analysis of a single-center clinical experience toward development of curative treatment of 123 pemphigus patients with a long-term follow-up: efficacy and safety of the multidrug protocol combining intravenous immunoglobulin with the cytotoxic immunosuppressor and mitochondrion-protecting drugs. Int J Dermatol. 2019;58(1):114–25.

    Article  CAS  Google Scholar 

  64. Gurcan HM, Ahmed AR. Frequency of adverse events associated with intravenous immunoglobulin therapy in patients with pemphigus or pemphigoid. Ann Pharmacother. 2007;41(10):1604–10.

    Article  CAS  Google Scholar 

  65. Marie I, et al. Intravenous immunoglobulin-associated arterial and venous thrombosis; report of a series and review of the literature. Br J Dermatol. 2006;155(4):714–21.

    Article  CAS  Google Scholar 

  66. Ahmed AR, Gurcan HM. Use of intravenous immunoglobulin therapy during pregnancy in patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2011;25(9):1073–9.

    Article  CAS  Google Scholar 

  67. Asarch A, Razzaque Ahmed A. Treatment of juvenile pemphigus vulgaris with intravenous immunoglobulin therapy. Pediatr Dermatol. 2009;26(2):197–202.

  68. Heelan K, et al. Cost and resource use of pemphigus and pemphigoid disorders pre- and post-rituximab. J Cutan Med Surg. 2015;19(3):274–82.

    Article  Google Scholar 

  69. Valdebran M, Amber KT. Coverage of intravenous immunoglobulin for autoimmune blistering diseases among US insurers. JAMA Dermatol. 2017;153(11):1189–90.

    Article  Google Scholar 

  70. Guillaume JC, et al. Controlled study of plasma exchange in pemphigus. Arch Dermatol. 1988;124(11):1659–63.

    Article  CAS  Google Scholar 

  71. Ruocco V, et al. Pathogenicity of the intercellular antibodies of pemphigus and their periodic removal from the circulation by plasmapheresis. Br J Dermatol. 1978;98(2):237–41.

    Article  CAS  Google Scholar 

  72. Auerbach R, Bystryn JC. Plasmapheresis and immunosuppressive therapy. Effect on levels of intercellular antibodies in pemphigus vulgaris. Arch Dermatol. 1979;115(6):728–30.

  73. Euler HH, Loffler H, Christophers E. Synchronization of plasmapheresis and pulse cyclophosphamide therapy in pemphigus vulgaris. Arch Dermatol. 1987;123(9):1205–10.

    Article  CAS  Google Scholar 

  74. Tan-Lim R, Bystryn JC. Effect of plasmapheresis therapy on circulating levels of pemphigus antibodies. J Am Acad Dermatol. 1990;22(1):35–40.

    Article  CAS  Google Scholar 

  75. Bystryn JC. Plasmapheresis therapy of pemphigus. Arch Dermatol. 1988;124(11):1702–4.

    Article  CAS  Google Scholar 

  76. Blaszczyk M, et al. Indications for future studies on the treatment of pemphigus with plasmapheresis. Arch Dermatol. 1989;125(6):843–4.

    Article  CAS  Google Scholar 

  77. Roujeau JC. Plasmapheresis therapy of pemphigus and bullous pemphigoid. Semin Dermatol. 1988;7(3):195–200.

    CAS  Google Scholar 

  78. Ruocco V. Plasmapheresis and pulse cyclophosphamide therapy in pemphigus vulgaris: a novelty or a reappraisal? Arch Dermatol. 1988;124(11):1716–8.

    Article  CAS  Google Scholar 

  79. Harman KE, et al. British Association of Dermatologists’ guidelines for the management of pemphigus vulgaris 2017. Br J Dermatol. 2017;177(5):1170–201.

    Article  CAS  Google Scholar 

  80. Liu Y, et al. Double-filtration plasmapheresis combined with immunosuppressive treatment for severe pemphigus: 10 years’ experience of a single center in China. J Clin Apher. 2021;36(1):20–7.

    Article  Google Scholar 

  81. Sinha AA, Hoffman MB, Janicke EC. Pemphigus vulgaris: approach to treatment. Eur J Dermatol. 2015;25(2):103–13.

    Article  Google Scholar 

  82. Eming R, Hertl M. Immunoadsorption in pemphigus. Autoimmunity. 2006;39(7):609–16.

    Article  CAS  Google Scholar 

  83. Dietze J, et al. Successful and well-tolerated bi-weekly immunoadsorption regimen in pemphigus vulgaris. Atheroscler Suppl. 2017;30:271–7.

    Article  Google Scholar 

  84. Behzad M, et al. Combined treatment with immunoadsorption and rituximab leads to fast and prolonged clinical remission in difficult-to-treat pemphigus vulgaris. Br J Dermatol. 2012;166(4):844–52.

    Article  CAS  Google Scholar 

  85. Meyersburg D, et al. Immunoadsorption in dermatology. Ther Apher Dial. 2012;16(4):311–20.

    Article  CAS  Google Scholar 

  86. Kolesnik M, et al. Treatment of severe autoimmune blistering skin diseases with combination of protein A immunoadsorption and rituximab: a protocol without initial high dose or pulse steroid medication. J Eur Acad Dermatol Venereol. 2014;28(6):771–80.

    Article  CAS  Google Scholar 

  87. Kasperkiewicz M, et al. Treatment of severe pemphigus with a combination of immunoadsorption, rituximab, pulsed dexamethasone and azathioprine/mycophenolate mofetil: a pilot study of 23 patients. Br J Dermatol. 2012;166(1):154–60.

    Article  CAS  Google Scholar 

  88. Luftl M, et al. Successful removal of pathogenic autoantibodies in pemphigus by immunoadsorption with a tryptophan-linked polyvinylalcohol adsorber. Br J Dermatol. 2003;149(3):598–605.

    Article  CAS  Google Scholar 

  89. Schmidt E, et al. Protein A immunoadsorption: a novel and effective adjuvant treatment of severe pemphigus. Br J Dermatol. 2003;148(6):1222–9.

    Article  CAS  Google Scholar 

  90. Shimanovich I, et al. Improved protocol for treatment of pemphigus vulgaris with protein A immunoadsorption. Clin Exp Dermatol. 2006;31(6):768–74.

    Article  CAS  Google Scholar 

  91. Mersmann M, et al. Immunoadsorber for specific apheresis of autoantibodies in the treatment of bullous pemphigoid. Arch Dermatol Res. 2016;308(1):31–8.

    Article  CAS  Google Scholar 

  92. Schmidt E, Zillikens D. Immunoadsorption in dermatology. Arch Dermatol Res. 2010;302(4):241–53.

    Article  Google Scholar 

  93. Beissert S, et al. Treating pemphigus vulgaris with prednisone and mycophenolate mofetil: a multicenter, randomized, placebo-controlled trial. J Invest Dermatol. 2010;130(8):2041–8.

    Article  CAS  Google Scholar 

  94. Orvis AK, et al. Mycophenolate mofetil in dermatology. J Am Acad Dermatol. 2009;60(2):183–99; quiz 200–2.

  95. Hopkins ZH, Wu BC, Nousari CH. Rituximab versus mycophenolate mofetil in pemphigus vulgaris. N Engl J Med. 2021;385(11):1055–6.

    Article  Google Scholar 

  96. Werth VP, Joly P, Chen DM. Rituximab versus mycophenolate mofetil in pemphigus vulgaris. Reply N Engl J Med. 2021;385(11):1056.

    Google Scholar 

  97. Meggitt SJ, et al. British Association of Dermatologists’ guidelines for the safe and effective prescribing of azathioprine 2011. Br J Dermatol. 2011;165(4):711–34.

    Article  CAS  Google Scholar 

  98. Kotlyar DS, et al. Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: a meta-analysis. Clin Gastroenterol Hepatol. 2015;13(5):847–58 e4; quiz e48–50.

  99. Elder MJ, Lightman S, Dart JK. Role of cyclophosphamide and high dose steroid in ocular cicatricial pemphigoid. Br J Ophthalmol. 1995;79(3):264–6.

    Article  CAS  Google Scholar 

  100. Friedman J, et al. Low-dose pulsed intravenous cyclophosphamide for severe ocular cicatricial pemphigoid in elderly patients. Cornea. 2014;33(10):1066–70.

    Article  Google Scholar 

  101. Calebotta A, et al. Pemphigus vulgaris: benefits of tetracycline as adjuvant therapy in a series of thirteen patients. Int J Dermatol. 1999;38(3):217–21.

    Article  CAS  Google Scholar 

  102. Gaspar ZS, Walkden V, Wojnarowska F. Minocycline is a useful adjuvant therapy for pemphigus. Australas J Dermatol. 1996;37(2):93–5.

    Article  CAS  Google Scholar 

  103. Ozog DM, et al. Minocycline-induced hyperpigmentation in patients with pemphigus and pemphigoid. Arch Dermatol. 2000;136(9):1133–8.

    Article  CAS  Google Scholar 

  104. Williams HC, et al. Doxycycline versus prednisolone as an initial treatment strategy for bullous pemphigoid: a pragmatic, non-inferiority, randomised controlled trial. Lancet. 2017;389(10079):1630–8.

    Article  CAS  Google Scholar 

  105. Kridin K, et al. From bench to bedside: evolving therapeutic targets in autoimmune blistering disease. J Eur Acad Dermatol Venereol. 2019;33(12):2239–52.

    Article  CAS  Google Scholar 

  106. Goebeler M, et al. Treatment of pemphigus vulgaris and foliaceus with efgartigimod, a neonatal Fc receptor inhibitor: a phase II multicentre, open-label feasibility trial. Br J Dermatol. 2021.

  107. Zakrzewicz A, et al. Stabilization of keratinocyte monolayer integrity in the presence of anti-desmoglein-3 antibodies through FcRn blockade with efgartigimod: novel treatment paradigm for pemphigus? Cells. 2022;11(6).

  108. Vinall C, Stevens L, McArdle P. Pemphigus vulgaris: a multidisciplinary approach to management. BMJ Case Rep. 2013;2013.

  109. Bystryn JC, Rudolph JL. Pemphigus. Lancet. 2005;366(9479):61–73.

    Article  Google Scholar 

  110. Tabrizi MN, et al. Accelerating effects of epidermal growth factor on skin lesions of pemphigus vulgaris: a double-blind, randomized, controlled trial. J Eur Acad Dermatol Venereol. 2007;21(1):79–84.

    Article  CAS  Google Scholar 

  111. Iraji F, Banan L. The efficacy of nicotinamide gel 4% as an adjuvant therapy in the treatment of cutaneous erosions of pemphigus vulgaris. Dermatol Ther. 2010;23(3):308–11.

    Article  Google Scholar 

  112. Abedini R, et al. Comparison of topical nanocolloidal silver formulation use with eosin 2% solution in management of hard-to-heal ulcers in patients with pemphigus vulgaris. J Wound Care. 2020;29(11):664–8.

    Article  Google Scholar 

  113. Soares HPL, Brandao EDS, Tonole R. Primary bandages for people with pemphigus vulgaris lesions: an integrative literature review. Rev Gaucha Enferm. 2020;41: e20190259.

    Article  Google Scholar 

  114. Brandao E, Santos I, Lanzillotti R. Reduction of pain in clients with autoimmune bullous dermatoses: evaluation by fuzzy logic. Online Brazilian Journal of Nursing. 2016;15(4):675–82.

    Google Scholar 

  115. Higgins EA, West JA. A novel use of topical ketamine for the treatment of oral pemphigus: a case report. J Palliat Care. 2021;36(3):146–7.

    Article  Google Scholar 

  116. Basso FG, et al. Proliferation, migration, and expression of oral-mucosal-healing-related genes by oral fibroblasts receiving low-level laser therapy after inflammatory cytokines challenge. Lasers Surg Med. 2016;48(10):1006–14.

    Article  Google Scholar 

  117. Suter VGA, Sjolund S, Bornstein MM. Effect of laser on pain relief and wound healing of recurrent aphthous stomatitis: a systematic review. Lasers Med Sci. 2017;32(4):953–63.

    Article  Google Scholar 

  118. Minicucci EM, et al. Low-level laser therapy on the treatment of oral and cutaneous pemphigus vulgaris: case report. Lasers Med Sci. 2012;27(5):1103–6.

    Article  Google Scholar 

  119. Yousef M, et al. The effect of low level laser therapy on pemphigus vulgaris lesions: a pilot study. J Lasers Med Sci. 2017;8(4):177–80.

    Article  Google Scholar 

  120. Pavlic V, et al. Pemphigus vulgaris and laser therapy: crucial role of dentists. Med Pregl. 2014;67(1–2):38–42.

    Article  Google Scholar 

  121. Dal Pra KJ, et al. Oral management of pemphigus vulgaris in the intensive care unit. Spec Care Dentist. 2020;40(3):280–4.

    Article  Google Scholar 

  122. Akman A, et al. Periodontal status in patients with pemphigus vulgaris. Oral Dis. 2008;14(7):640–3.

    Article  CAS  Google Scholar 

  123. Gambino A, et al. Conservative approach in patients with pemphigus gingival vulgaris: a pilot study of five cases. Int J Dent. 2014;2014: 747506.

    Article  Google Scholar 

  124. Passaro L, Harbarth S, Landelle C. Prevention of hospital-acquired pneumonia in non-ventilated adult patients: a narrative review. Antimicrob Resist Infect Control. 2016;5:43.

    Article  Google Scholar 

  125. Miletta N, et al. The management of pemphigus vulgaris in a burn intensive care unit: a case report and treatment review. J Burn Care Res. 2014;35(5):e357–63.

    Article  Google Scholar 

  126. Pakshir K, et al. Identification and antifungal activity profile of candida species isolated from patients with pemphigus vulgaris with oral lesions. Acta Dermatovenerol Croat. 2019;27(3):137–41.

    CAS  Google Scholar 

  127. Bystryn JC, Steinman NM. The adjuvant therapy of pemphigus. An update Arch Dermatol. 1996;132(2):203–12.

    Article  CAS  Google Scholar 

  128. Huang YH, et al. Incidence, mortality, and causes of death of patients with pemphigus in Taiwan: a nationwide population-based study. J Invest Dermatol. 2012;132(1):92–7.

    Article  CAS  Google Scholar 

  129. Rinehart JJ, et al. Effects of corticosteroid therapy on human monocyte function. N Engl J Med. 1975;292(5):236–41.

    Article  CAS  Google Scholar 

  130. Franchimont D, et al. Effects of dexamethasone on the profile of cytokine secretion in human whole blood cell cultures. Regul Pept. 1998;73(1):59–65.

    Article  CAS  Google Scholar 

  131. Slade JD, Hepburn B. Prednisone-induced alterations of circulating human lymphocyte subsets. J Lab Clin Med. 1983;101(3):479–87.

    CAS  Google Scholar 

  132. Esmaili N, et al. Pemphigus vulgaris and infections: a retrospective study on 155 patients. Autoimmune Dis. 2013;2013: 834295.

    Google Scholar 

  133. Leshem YA, et al. Opportunistic infections in patients with pemphigus. J Am Acad Dermatol. 2014;71(2):284–92.

    Article  Google Scholar 

  134. Klein NC, Go CH, Cunha BA. Infections associated with steroid use. Infect Dis Clin North Am. 2001;15(2):423–32, viii.

  135. Migita K, et al. Rates of serious intracellular infections in autoimmune disease patients receiving initial glucocorticoid therapy. PLoS ONE. 2013;8(11): e78699.

    Article  Google Scholar 

  136. Leshem YA, et al. Is there a role for opportunistic infection prophylaxis in pemphigus? An expert survey. Am J Clin Dermatol. 2017;18(1):127–32.

    Article  Google Scholar 

  137. Ahmed AR, Moy R. Death in pemphigus. J Am Acad Dermatol. 1982;7(2):221–8.

    Article  CAS  Google Scholar 

  138. Stern A, et al. Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev. 2014;10:CD005590.

  139. Smego RA Jr., Moeller MB, Gallis H.A. Trimethoprim-sulfamethoxazole therapy for Nocardia infections. Arch Intern Med. 1983;143(4):711–8.

  140. Spitzer PG, Hammer SM, Karchmer AW. Treatment of Listeria monocytogenes infection with trimethoprim-sulfamethoxazole: case report and review of the literature. Rev Infect Dis. 1986;8(3):427–30.

    Article  CAS  Google Scholar 

  141. Kirby BD, et al. Legionnaires’ disease: report of sixty-five nosocomially acquired cases of review of the literature. Medicine (Baltimore). 1980;59(3):188–205.

    Article  CAS  Google Scholar 

  142. Amber KT, et al. Determining the incidence of pneumocystis pneumonia in patients with autoimmune blistering diseases not receiving routine prophylaxis. JAMA Dermatol. 2017;153(11):1137–41.

    Article  Google Scholar 

  143. Faraji H, et al. Evaluating the risk-to-benefit ratio of using cotrimoxazole as a pneumocystis pneumonia preventative intervention among pemphigus patients treated with rituximab: a retrospective study with 494 patients. Dermatol Ther. 2022;35(2): e15257.

    Article  CAS  Google Scholar 

  144. Patel PM, Jones VA, Amber KT. Disease-dependent risk of Pneumocystis Pneumonia: The case of autoimmune blistering disease. Chest. 2020;158(6):2704–5.

    Article  CAS  Google Scholar 

  145. Ghembaza A, et al. Risk factors and prevention of Pneumocystis jirovecii pneumonia in patients with autoimmune and inflammatory diseases. Chest. 2020;158(6):2323–32.

    Article  CAS  Google Scholar 

  146. Kumar S, et al. Identification of factors associated with treatment refractoriness of oral lesions in pemphigus vulgaris. Br J Dermatol. 2017;177(6):1583–9.

    Article  CAS  Google Scholar 

  147. Lehman JS, el-Azhary RA, Kaposi varicelliform eruption in patients with autoimmune bullous dermatoses. Int J Dermatol. 2016;55(3):e136–40.

  148. Ruocco E, et al. Viruses and pemphigus: an intriguing never-ending story. Dermatology. 2014;229(4):310–5.

    Article  Google Scholar 

  149. Narum S, Westergren T, Klemp M. Corticosteroids and risk of gastrointestinal bleeding: a systematic review and meta-analysis. BMJ Open. 2014;4(5): e004587.

    Article  Google Scholar 

  150. Saag KG, et al. Low dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med. 1994;96(2):115–23.

    Article  CAS  Google Scholar 

  151. Kneiber D, et al. Gastrointestinal symptoms, gastrointestinal bleeding and the role of diet in patients with autoimmune blistering disease: a survey of the International Pemphigus and Pemphigoid Foundation. J Eur Acad Dermatol Venereol. 2019;33(10):1935–40.

    Article  CAS  Google Scholar 

  152. Kaplan RP, et al. Esophagitis dissecans superficialis associated with pemphigus vulgaris. J Am Acad Dermatol. 1981;4(6):682–7.

    Article  CAS  Google Scholar 

  153. Schissel DJ, David-Bajar K. Esophagitis dissecans superficialis associated with pemphigus vulgaris. Cutis. 1999;63(3):157–60.

    CAS  Google Scholar 

  154. Chang S, et al. Esophageal involvement of pemphigus vulgaris associated with upper gastrointestinal bleeding. Clin Endosc. 2014;47(5):452–4.

    Article  Google Scholar 

  155. Trattner A, et al. Esophageal involvement in pemphigus vulgaris: a clinical, histologic, and immunopathologic study. J Am Acad Dermatol. 1991;24(2 Pt 1):223–6.

    Article  CAS  Google Scholar 

  156. Amber KT, Grando SA. Gastrointestinal prophylaxis in patients with autoimmune blistering disease treated with corticosteroids: an expert survey. Int J Dermatol. 2018;57(11):e125–6.

    Article  Google Scholar 

  157. Jones MG, Tsega S, Cho HJ. Inappropriate prescription of proton pump inhibitors in the setting of steroid use: a teachable moment. JAMA Intern Med. 2016;176(5):594–5.

    Article  Google Scholar 

  158. Savin JA. The events leading to the death of patients with pemphigus and pemphigoid. Br J Dermatol. 1979;101(5):521–34.

    Article  CAS  Google Scholar 

  159. Mimouni D, et al. Pemphigus, analysis of 155 patients. J Eur Acad Dermatol Venereol. 2010;24(8):947–52.

    Article  CAS  Google Scholar 

  160. Leshem YA, et al. Venous thromboembolism in patients with pemphigus: a cohort study. J Am Acad Dermatol. 2017;77(2):256–60.

    Article  Google Scholar 

  161. Kridin K, et al. The risk of pulmonary embolism in patients with pemphigus: a population-based large-scale longitudinal study. Front Immunol. 2019;10:1559.

    Article  Google Scholar 

  162. Shaheen MS, Silverberg JI. Association of inflammatory skin diseases with venous thromboembolism in US adults. Arch Dermatol Res. 2021;313(4):281–9.

    Article  Google Scholar 

  163. Alikhan R, et al. Risk factors for venous thromboembolism in hospitalized patients with acute medical illness: analysis of the MEDENOX Study. Arch Intern Med. 2004;164(9):963–8.

    Article  Google Scholar 

  164. Atzmony L, et al. Incidence of cytomegalovirus-associated thrombosis and its risk factors: a case-control study. Thromb Res. 2010;126(6):e439–43.

    Article  CAS  Google Scholar 

  165. Stuijver DJF, et al. Use of oral glucocorticoids and the risk of pulmonary embolism: a population-based case-control study. Chest. 2013;143(5):1337–42.

    Article  CAS  Google Scholar 

  166. Kahn SR, et al. Prevention of VTE in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e195S-e226S.

    Article  CAS  Google Scholar 

  167. Chmielnicka M, Wozniacka A, Torzecka JD. The influence of corticosteroid treatment on the OPG/RANK/RANKL pathway and osteocalcin in patients with pemphigus. Postepy Dermatol Alergol. 2014;31(5):281–8.

    Article  Google Scholar 

  168. Ucmak D, et al. The frequency of osteoporosis in patients with pemphigus vulgaris on treatment. Indian J Dermatol Venereol Leprol. 2013;79(2):211–5.

    Article  Google Scholar 

  169. Wohl Y, Dreiher J, Cohen AD. Pemphigus and osteoporosis: a case-control study. Arch Dermatol. 2010;146(10):1126–31.

    Article  Google Scholar 

  170. Hsu DY, et al. Comorbidities and inpatient mortality for pemphigus in the U.S.A. Br J Dermatol. 2016;174(6):1290–8.

  171. Rosenberg FR, Sanders S, Nelson CT. Pemphigus: a 20-year review of 107 patients treated with corticosteroids. Arch Dermatol. 1976;112(7):962–70.

    Article  CAS  Google Scholar 

  172. Wormser D, et al. Cumulative oral corticosteroid use increases risk of glucocorticoid-related adverse events in patients with newly diagnosed pemphigus. J Am Acad Dermatol. 2017;77(2):379–81.

    Article  Google Scholar 

  173. Ghodsi SZ, et al. Osteoporosis in patients with Pemphigus Vulgaris before steroid therapy. Acta Med Iran. 2014;52(12):879–83.

    Google Scholar 

  174. Chovatiya R, Silverberg JI. Association of pemphigus and pemphigoid with osteoporosis and pathological fractures. Arch Dermatol Res. 2020;312(4):263–71.

    Article  Google Scholar 

  175. Marzano AV, et al. Vitamin D and skeletal health in autoimmune bullous skin diseases: a case control study. Orphanet J Rare Dis. 2015;10:8.

    Article  Google Scholar 

  176. Amagai M. Pemphigus vulgaris and its active disease mouse model. Curr Dir Autoimmun. 2008;10:167–81.

    Article  CAS  Google Scholar 

  177. Pacifici R. The immune system and bone. Arch Biochem Biophys. 2010;503(1):41–53.

    Article  CAS  Google Scholar 

  178. El-Komy MH, Samir N, Shaker OG. Estimation of vitamin D levels in patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2014;28(7):859–63.

    Article  CAS  Google Scholar 

  179. Joshi N, et al. Vitamin D deficiency and lower TGF-beta/IL-17 ratio in a North Indian cohort of pemphigus vulgaris. BMC Res Notes. 2014;7:536.

    Article  Google Scholar 

  180. Moravvej H, Mozafari N, Younespour S. Serum 25-hydroxy vitamin D level in patients with pemphigus and its association with disease severity. Clin Exp Dermatol. 2016;41(2):142–7.

    Article  CAS  Google Scholar 

  181. Zarei M, et al. Evaluation of vitamin D status in newly diagnosed pemphigus vulgaris patients. Iran J Public Health. 2014;43(11):1544–9.

    Google Scholar 

  182. Amber KT, Grando SA. Current practices for the prophylaxis against bone mineral density loss in patients with autoimmune blistering disease treated with corticosteroids: an expert survey. J Eur Acad Dermatol Venereol. 2018;32(11):e416–8.

    Article  CAS  Google Scholar 

  183. Overman RA, et al. United States adults meeting 2010 American College of Rheumatology criteria for treatment and prevention of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2014;66(11):1644–52.

    Article  Google Scholar 

  184. Buckley L, et al. 2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Care Res (Hoboken). 2017;69(8):1095–110.

    Article  Google Scholar 

  185. Tee SI, et al. Prevention of glucocorticoid-induced osteoporosis in immunobullous diseases with alendronate: a randomized, double-blind, placebo-controlled study. Arch Dermatol. 2012;148(3):307–14.

    Article  CAS  Google Scholar 

  186. Furukawa F, et al. Preliminary study of etidronate for prevention of corticosteroid-induced osteoporosis caused by oral glucocorticoid therapy. Clin Exp Dermatol. 2011;36(2):165–8.

    Article  CAS  Google Scholar 

  187. Yaghubi E, et al. Effects of l-carnitine supplementation on cardiovascular and bone turnover markers in patients with pemphigus vulgaris under corticosteroids treatment: a randomized, double-blind, controlled trial. Dermatol Ther. 2019;32(5): e13049.

    Article  Google Scholar 

  188. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  Google Scholar 

Download references

Funding

KTA is supported in part by Office of Research Infrastructure Programs of the National Institute of Health (R21OD030057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connor Cole.

Ethics declarations

Conflict of Interest

KTA has served as a consultant for Astra Zeneca, Argenx, and Akari therapeutics. KTA has received research funding from Astra Zeneca and Kabafusion.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hospital-Based Dermatology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, C., Amber, K. Pemphigus for the Inpatient Dermatologist. Curr Derm Rep 11, 221–232 (2022). https://doi.org/10.1007/s13671-022-00369-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-022-00369-2

Keywords

Navigation