Skip to main content

Advertisement

Log in

Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack ME, Taha AE, Algammal AM, Elewa YH. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods. 2020;9(3):374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. 2021;35(3):1230–6.

    Article  CAS  PubMed  Google Scholar 

  3. Yao C, Xi C, Hu K, Gao W, Cai X, Qin J, Lv S, Du C, Wei Y. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol J. 2018;15:1–3.

    Article  Google Scholar 

  4. Pierro FD, Khan A, Bertuccioli A, Maffioli P, Derosa G, Khan S, Khan BA, Nigar R, Ujjan I, Devrajani BR. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol. 2021;67(2):190–5.

    Article  Google Scholar 

  5. Wadhwa K, Kadian V, Puri V, Bhardwaj BY, Sharma A, Pahwa R, Rao R, Gupta M, Singh I. New insights into quercetin nanoformulations for topical delivery. Phytomedicine. 2022;14: 100257.

    Article  Google Scholar 

  6. Murakami T. A minireview: usefulness of transporter-targeted prodrugs in enhancing membrane permeability. J Pharm Sci. 2016;105(9):2515–26.

    Article  CAS  PubMed  Google Scholar 

  7. Cunico LP, Cobo AM, Al-Hamimi S, Turner C. Solubility and thermal degradation of quercetin in CO2-expanded liquids. Molecules. 2020;25(23):5582.

  8. Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Tech. 2016;56:21–38.

    Article  Google Scholar 

  9. Filipa Brito A, Ribeiro M, Margarida Abrantes A, Salome Pires A, Jorge Teixo R, Guilherme Tralhao J, Filomena BM. Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr Med Chem. 2015;22(26):3025–39.

    Article  Google Scholar 

  10. Papakyriakopoulou P, Velidakis N, Khattab E, Valsami G, Korakianitis I, Kadoglou NP. Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals. 2022;15(8):1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent advances in nanoformulations for quercetin delivery. Pharmaceutics. 2023;15(6):1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today. 2020;25(1):209–22.

    Article  CAS  PubMed  Google Scholar 

  13. Nam JS, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee SS. Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules. 2016;21(1):108.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vinayak M, Maurya AK. Quercetin loaded nanoparticles in targeting cancer: recent development. Anti-Cancer Agent ME. 2019;19(13):1560–76.

    Article  CAS  Google Scholar 

  15. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    Article  CAS  PubMed  Google Scholar 

  16. Terao J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem Pharmacol. 2017;139:15–23.

    Article  CAS  PubMed  Google Scholar 

  17. Kandemir K, Tomas M, McClements DJ, Capanoglu E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci Tech. 2022;119:192–200.

    Article  CAS  Google Scholar 

  18. Manzoor MF, Hussain A, Sameen A, Sahar A, Khan S, Siddique R, Aadil RM, Xu B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: a review. Ultrason Sonochem. 2021;78: 105686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh A, Verma BK, Pandey S. Exploring natural bioenhancers to enhancing bioavailability: an overview. Int J Pharm. 2021;12(2):24–31.

  20. Shinkar DM, Amrutkar SV, Pingale PL. Case study: Indian herbal bioenhancers. In: Pingale PL, editor. Drug delivery technology: herbal bioenhancers in pharmaceuticals. Berlin: de Gruyter; 2022. p. 239.

  21. Krause KP, Müller RH. Production and characterisation of highly concentrated nanosuspensions by high pressure homogenisation. Int J Pharm. 2001;214(1–2):21–4.

    Article  CAS  PubMed  Google Scholar 

  22. Allam AN, Komeil IA, Fouda MA, Abdallah OY. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability. Int J Pharm. 2015;489(1–2):117–23.

    Article  CAS  PubMed  Google Scholar 

  23. Tan KW, Tang SY, Thomas R, Vasanthakumari N, Manickam S. Curcumin-loaded sterically stabilized nanodispersion based on non-ionic colloidal system induced by ultrasound and solvent diffusion-evaporation. Pure Appl Chem. 2016;88(1–2):43–60.

    Article  CAS  Google Scholar 

  24. Zhang Q, Polyakov NE, Chistyachenko YS, Khvostov MV, Frolova TS, Tolstikova TG, Dushkin AV, Su W. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198–209.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ghanem AS, Ali HS, El-Shanawany SM, Ibrahim ES. Solubility and dissolution enhancement of quercetin via preparation of spray dried microstructured solid dispersions. Thai J Pharm Sci. 2013;37(1):12–24.

  26. Han J, Tong M, Li S, Yu X, Hu Z, Zhang Q, Xu R, Wang J. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: a case of quercetin. Drug Dev Ind Pharmacy. 2021;47(1):153–62.

    Article  CAS  Google Scholar 

  27. Li SJ. Study on preparation of quercetin solid dispersions and its bioavailability in rats. Chin Tradit Herb Drugs. 2017;24:4229–34.

  28. Li B, Konecke S, Harich K, Wegiel L, Taylor LS, Edgar KJ. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohyd Polym. 2013;92(2):2033–40.

    Article  CAS  Google Scholar 

  29. Gilley AD, Arca HC, Nichols BL, Mosquera-Giraldo LI, Taylor LS, Edgar KJ, Neilson AP. Novel cellulose-based amorphous solid dispersions enhance quercetin solution concentrations in vitro. Carbohyd Polym. 2017;157:86–93.

    Article  CAS  Google Scholar 

  30. Van Hecke E, Benali M. Solid dispersions of quercetin-PEG matrices: miscibility prediction, preparation and characterization. Food Biosci. 2022;49: 101868.

    Article  Google Scholar 

  31. Fan N, He Z, Ma P, Wang X, Li C, Sun J, Sun Y, Li J. Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions. Carbohyd Polym. 2018;181:543–50.

    Article  CAS  Google Scholar 

  32. Bunlung S, Nualnoi T, Issarachot O, Wiwattanapatapee R. Development of raft-forming liquid and chewable tablet formulations incorporating quercetin solid dispersions for treatment of gastric ulcers. Saudi Pharm J. 2021;29(10):1143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen ZP, Sun J, Chen HX, Xiao YY, Liu D, Chen J, Cai H, Cai BC. Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats. Fitoterapia. 2010;81(8):1045–52.

  34. Zhao MH, Yuan L, Meng LY, Qiu JL, Wang CB. Quercetin-loaded mixed micelles exhibit enhanced cytotoxic efficacy in non-small cell lung cancer in vitro. Exp Ther Med. 2017;14(6):5503–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi MK, Lee J, Song IS. Pharmacokinetic modulation of substrate drugs via the inhibition of drug-metabolizing enzymes and transporters using pharmaceutical excipients. J Pharm Investig. 2023;53(1):1–8.

    Article  CAS  Google Scholar 

  36. Strambeanu N, Demetrovici L, Dragos D, Lungu M. Nanoparticles: Definition, classification and general physical properties. In: Lungu M, Neculae A, Bunoiu M, Biris C, editors. Nanoparticles’ promises and risks. Cham: Springer; 2014. p. 3–8.

    Google Scholar 

  37. Khor CM, Ng WK, Chan KP, Dong Y. Preparation and characterization of quercetin/dietary fiber nanoformulations. Carbohyd Polym. 2017;161:109–17.

    Article  CAS  Google Scholar 

  38. Saha C, Kaushik A, Das A, Pal S, Majumder D. Anthracycline drugs on modified surface of quercetin-loaded polymer nanoparticles: a dual drug delivery model for cancer treatment. PLoS ONE. 2016;11(5): e0155710.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Majumder D, Roychoudhry S, Kundu S, Dey SK, Saha C. Hydrophobic quercetin encapsulated hemoglobin nanoparticles: formulation and spectroscopic characterization. J Biomol Struct Dyn. 2022;40(20):9860–9.

  40. Singh J, Mittal P, Vasant Bonde G, Ajmal G, Mishra B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol. 2018;46:S546–55.

    Article  CAS  PubMed  Google Scholar 

  41. Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye—Part II—Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2017;110:58–69.

  42. Rabanel MJ, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem. 2012;19(19):3070–102.

    Article  CAS  PubMed  Google Scholar 

  43. Bachhav SS, Dighe VD, Kotak D, Devarajan PV. Rifampicin lipid-polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm. 2017;532(1):612–22.

  44. Bachhav SS, Dighe VD, Devarajan PV. Exploring Peyer’s patch uptake as a strategy for targeted lung delivery of polymeric rifampicin nanoparticles. Mol Pharm. 2018;15(10):4434–45.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm. 2019;570: 118642.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan ZP, Chen LJ, Fan LY, Tang MH, Yang GL, Yang HS, Du XB, Wang GQ, Yao WX, Zhao QM, Ye B. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res. 2006;12(10):3193–9.

    Article  CAS  PubMed  Google Scholar 

  47. Long Q, Xie Y, Huang Y, Wu Q, Zhang H, Xiong S, Liu Y, Chen L, Wei Y, Zhao X, Gong C. Induction of apoptosis and inhibition of angiogenesis by PEGylated liposomal quercetin in both cisplatin-sensitive and cisplatin-resistant ovarian cancers. J Biomed Nanotechnol. 2013;9(6):965–75.

    Article  CAS  PubMed  Google Scholar 

  48. Shaji J, Iyer S. Double-loaded liposomes encapsulating Quercetin and Quercetin beta-cyclodextrin complexes: Preparation, characterization and evaluation. Asian J Pharm. 2012;6(3):218–26.

    Article  Google Scholar 

  49. Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids Surf B Biointerfaces. 2014;113:15–24.

    Article  CAS  PubMed  Google Scholar 

  50. Pinheiro RG, Granja A, Loureiro JA, Pereira MC, Pinheiro M, Neves AR, Reis S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur J Pharm Biopharm. 2020;148:105314.

    CAS  Google Scholar 

  51. Rogerio AP, Dora CL, Andrade EL, Chaves JS, Silva LF, Lemos-Senna E, Calixto JB. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res. 2010;61(4):288–97.

    Article  CAS  PubMed  Google Scholar 

  52. Chen W, Ju X, Aluko RE, Zou Y, Wang Z, Liu M, He R. Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin. Food Hydrocoll. 2020;108:106042.

    Article  CAS  Google Scholar 

  53. Alsabeelah N, Kumar V. Formulation and optimization of quercetin nanoemulsion for enhancing its dissolution rate, bioavailability and cardioprotective activity. J Clust Sci. 2022;34:1893–906.

    Google Scholar 

  54. Penalva R, Gonzalez-Navarro CJ, Gamazo C, Esparza I, Irache JM. Zein nanoparticles for oral delivery of quercetin: pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine: NBM. 2017;13(1):103–10.

    Article  CAS  Google Scholar 

  55. Barbosa AI, Costa Lima SA, Reis S. Application of pH-Responsive Fucoidan/Chitosan Nanoparticles to Improve Oral Quercetin Delivery. Molecules. 2019;24(2):346. https://doi.org/10.3390/molecules24020346.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, Ruiz-Cruz S, Juárez J, Castro-Enríquez DD, Barreras-Urbina CG, López-Ahumada GA, Rodríguez-Félix F. Gallic acid-loaded zein nanoparticles by electrospraying process. J Food Sci. 2019;84(4):818–31.

    Article  PubMed  Google Scholar 

  57. Zhou Y, Chen D, Xue G, Yu S, Yuan C, Huang M, Jiang L. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv. 2020;10(57):34517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother. 2018;106:1513–26.

    Article  CAS  PubMed  Google Scholar 

  59. Chang CE, Hsieh CM, Huang SC, Su CY, Sheu MT, Ho HO. Lecithin-stabilized polymeric micelles (LsbPMs) for delivering quercetin: pharmacokinetic studies and therapeutic effects of quercetin alone and in combination with doxorubicin. Sci Rep. 2018;8(1):1–1.

    Article  Google Scholar 

  60. Patra A, Satpathy S, Shenoy AK, Bush JA, Kazi M, Hussain MD. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int J Nanomedicine. 2018;13:2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soltantabar P, Calubaquib EL, Mostafavi E, Biewer MC, Stefan MC. Enhancement of loading efficiency by coloading of doxorubicin and quercetin in thermoresponsive polymeric micelles. Biomacromol. 2020;21(4):1427–36.

    Article  CAS  Google Scholar 

  62. Madaan K, Lather V, Pandita D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv. 2016;23(1):254–62.

    Article  CAS  PubMed  Google Scholar 

  63. Rehman K, Ali I, El-Haj BM, Kanwal T, Maharjan R, Saifullah S, Imran M, Simjee SU, Shah MR. Synthesis of novel biocompatible resorcinarene based nanosized dendrimer-vesicles for enhanced anti-bacterial potential of quercetin. J Mol Liq. 2021;341: 116921.

    Article  CAS  Google Scholar 

  64. Khoee S, Hemati K. Synthesis of magnetite/polyamino-ester dendrimer based on PCL/PEG amphiphilic copolymers via convergent approach for targeted diagnosis and therapy. Polymer. 2013;54(21):5574–85.

    Article  CAS  Google Scholar 

  65. Gang W, Jie WJ, Ping ZL, Ming DS, Ying LJ, Lei W, Fang Y. Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin Drug Deliv. 2012;9(6):599–613.

    Article  PubMed  Google Scholar 

  66. Wong MY, Chiu GN. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine: NBM. 2011;7(6):834–40.

    Article  CAS  Google Scholar 

  67. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133(3):238–44.

    Article  CAS  PubMed  Google Scholar 

  68. Bose S, Du Y, Takhistov P, Michniak-Kohn B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharm. 2013;441(1–2):56–66.

    Article  CAS  PubMed  Google Scholar 

  69. Han J, Tong M, Li S, Yu X, Hu Z, Zhang Q, Xu R, Wang J. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: a case of quercetin. Drug Dev Ind Pharm. 2021;47(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  70. Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10(3):134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verma S, Gokhale R, Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm. 2009;380(1–2):216–22.

    Article  CAS  PubMed  Google Scholar 

  72. Gera S, Sampathi S, Maddukuri S, Dodoala S, Junnuthula V, Dyawanapelly S. Therapeutic potential of naringenin nanosuspension: in vitro and in vivo anti-osteoporotic studies. Pharmaceutics. 2022;14(7):1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yadav GV, Singh SR. Nanosuspension: A promising drug delivery system. Pharmacophore. 2012;3(5):217–43.

    CAS  Google Scholar 

  74. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  75. Kakran M, Shegokar R, Sahoo NG, Al Shaal L, Li L, Müller RH. Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm. 2012;80(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  76. Karadag A, Ozcelik B, Huang Q. Quercetin nanosuspensions produced by high-pressure homogenization. J Agr Food Chem. 2014;62(8):1852–9.

    Article  CAS  Google Scholar 

  77. Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm. 2011;404(1–2):231–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and in vivo fate. Eur J Pharm Sci. 2023;185: 106425.

  79. Pessoa LZ, Duarte JL, Ferreira RM, Oliveira AE, Cruz RA, Faustino SM, Carvalho JC, Fernandes CP, Souto RN, Araújo RS. Nanosuspension of quercetin: preparation, characterization and effects against Aedes aegypti larvae. Rev Bras Farmacogn. 2018;28:618–25.

  80. Sun M, Gao Y, Pei Y, Guo C, Li H, Cao F, Yu A, Zhai G. Development of nanosuspension formulation for oral delivery of quercetin. J Biomed Nanotech. 2010;6(4):325–32.

    Article  CAS  Google Scholar 

  81. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–41.

    Article  CAS  PubMed  Google Scholar 

  82. Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv. 2021;28(1):1226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: problems and promises. Curr Med Chem. 2013;20(20):2572–82.

    Article  CAS  PubMed  Google Scholar 

  84. Gupta MK, Sansare V, Shrivastava B, Jadhav S, Gurav P. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery. J Liposome Res. 2022;32(3):211–23.

    Article  CAS  PubMed  Google Scholar 

  85. Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J Food Sci Technol. 2020;57(10):3545–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hussein HA, Abdullah MA. Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Appl Nanosci. 2022;12(11):3071–96.

    Article  CAS  Google Scholar 

  87. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 2012;1(2):147–68.

    Article  CAS  Google Scholar 

  88. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dua JS, Rana AC, Bhandari AK. Liposome: methods of preparation and applications. Int J Pharm Stud Res. 2012;3(2):14–20.

    Google Scholar 

  90. Dwivedi C, Verma S. Review on preparation and characterization of liposomes with application. Int J Sci Innov Res. 2013;2:486–508.

    Google Scholar 

  91. Nsairat H, et al. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano. 2023;11: 100132.

    Article  Google Scholar 

  92. Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids. 2020;165: 104984.

    Article  CAS  Google Scholar 

  93. Ambrosio N, Voci S, Gagliardi A, Palma E, Fresta M, Cosco D. Application of biocompatible drug delivery nanosystems for the treatment of naturally occurring cancer in dogs. J Funct Biomater. 2022;13(3):116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu D, Hu H, Lin Z, Chen D, Zhu Y, Hou S, Shi X. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J Photochem Photobiol B: Biol. 2013;127:8–17.

    Article  CAS  Google Scholar 

  95. Tang L, Li K, Zhang Y, Li H, Li A, Xu Y, Wei B. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci Rep. 2020;10(1):2440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Riaz MK, Zhang X, Wong KH, Chen H, Liu Q, Chen X, Zhang G, Lu A, Yang Z. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomed. 2019;14:2879–902.

    Article  CAS  Google Scholar 

  97. Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121: 109604.

    Article  CAS  PubMed  Google Scholar 

  98. Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine: NBM. 2008;4(1):70–8.

    Article  CAS  Google Scholar 

  99. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res. 2017;4(2):67–72.

    Google Scholar 

  101. Bansal AK, Munjal B. Preparation of solid lipid nanoparticles for enhancement of oral bioavailability of curcumin. In: The Electronic Conference on Pharmaceutical Sciences; 2011 Mar 1–31; online.

  102. Akbari J, Saeedi M, Ahmadi F, Hashemi SM, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharm Dev Technol. 2022;27(5):525–44.

    Article  CAS  PubMed  Google Scholar 

  103. Teja VC, Chowdary VH, Raju YP, Surendra N, Vardhan RV, Reddy BK. A glimpse on solid lipid nanoparticles as drug delivery systems. J Glob Trends Pharm Sci. 2014;5(2):1649–57.

    Google Scholar 

  104. Chutoprapat R, Kopongpanich P, Chan LW. A mini-review on solid lipid nanoparticles and nanostructured lipid carriers: topical delivery of phytochemicals for the treatment of acne vulgaris. Molecules. 2022;27(11):3460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ngwuluka NC, Kotak DJ, Devarajan PV. Design and characterization of metformin-loaded solid lipid nanoparticles for colon cancer. AAPS PharmSciTech. 2017;18:358–68.

    Article  CAS  PubMed  Google Scholar 

  106. Karunakar G, Patel NP, Kamal SS. Nano structured lipid carrier based drug delivery system. J Chem Pharm Res. 2016;8(2):627–43.

    Google Scholar 

  107. Vijayakumar A, Baskaran R, Jang YS, Oh SH, Yoo BK. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech. 2017;18:875–83.

    Article  CAS  PubMed  Google Scholar 

  108. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93.

    Article  Google Scholar 

  109. Kurita T, Makino Y. Novel curcumin oral delivery systems. Anticancer Res. 2013;33(7):2807–21.

    CAS  PubMed  Google Scholar 

  110. Heuschkel S, Goebel A, Neubert RH. Microemulsions—modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97(2):603–31.

    Article  CAS  PubMed  Google Scholar 

  111. Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a review. Sys Rev Pharm. 2017;8(1):39.

    Article  CAS  Google Scholar 

  112. Vimalson DC. Techniques to enhance solubility of hydrophobic drugs: an overview. Asian J Pharm. 2016;10(2):39–47.

  113. Rajpoot K, Tekade RK. Microemulsion as drug and gene delivery vehicle: an inside story. In: Tekade RK, editor. Advances in pharmaceutical product development and research, drug delivery systems. Cambridge: Academic Press; 2019. p. 455–520.

  114. Waghmare SG, Nikhade RR, Hadke MA. Microemulsion and its applications novel approach towards the drug delivery. World J Pharm Res. 2015;5(1):477–502.

    Google Scholar 

  115. Shinde RL, Devarajan PV. Docosahexaenoic acid-mediated, targeted and sustained brain delivery of curcumin microemulsion. Drug Deliv. 2017;24(1):152–61.

  116. Sharma N, Mishra S, Sharma S, Deshpande RD, Sharma RK. Preparation and optimization of nanoemulsions for targeting drug delivery. Int J Drug Dev Res. 2013;5(4):37–48.

  117. Thakur N, Garg G, Sharma PK, Kumar N. Nanoemulsions: a review on various pharmaceutical application. Glob J Pharmacol. 2012;6(3):222–5.

    Google Scholar 

  118. Wilking JN, Graves SM, Chang CB, Meleson K, Lin MY, Mason TG. Dense cluster formation during aggregation and gelation of attractive slippery nanoemulsion droplets. Phys Rev Lett. 2006;96(1): 015501.

    Article  CAS  PubMed  Google Scholar 

  119. Mahadev M, Nandini HS, Ramu R, Gowda DV, Almarhoon ZM, Al-Ghorbani M, Mabkhot YN. Fabrication and evaluation of quercetin nanoemulsion: a delivery system with improved bioavailability and therapeutic efficacy in diabetes mellitus. Pharmaceuticals. 2022;15(1):70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mande PP, Bachhav SS, Devarajan PV. Solid dispersion of curcumin as polymeric films for bioenhancement and improved therapy of rheumatoid arthritis. Pharm Res. 2016;33:1972–87.

    Article  CAS  PubMed  Google Scholar 

  121. Chandrakar A, Sahu B, Sahu H, Dewangan J, Kumar N, Singh R, Gupta R, Kumar D, Sahu B, Dewangan K, Kaushal R. Review on the formulation considerations needed to produce a stable Self micro Emulsifying Drug Delivery System (SMEDDS). Res J Pharm Technol. 2017;10(5):1563–70.

    Article  Google Scholar 

  122. Khairnar DA, Darekar AB, Saudagar RB. A review on self-micro emulsifying drug delivery system: evident to improve the oral bioavailability of hydrophobic drugs. Asian J Pharm Technol. 2016;6(2):131–4.

    Article  Google Scholar 

  123. Sharma S, Khinch MP, Sharma N, Agrawal D, Gupta MK. Approaches to development of solid-self micron emulsifying drug delivery system: formulation techniques and dosage forms—a review. Asian J Pharm Res Dev. 2013;1(5):146–56.

  124. Khan BA, Bakhsh S, Khan H, Mahmood T, Rasul A. Basics of self micro emulsifying drug delivery system. J Pharm Altern Med. 2012;1(1):13–9.

    Google Scholar 

  125. Gao Y, Wang Y, Ma Y, Yu A, Cai F, Shao W, Zhai G. Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion. Colloids Surf B Biointerfaces. 2009;71(2):306–14.

    Article  CAS  PubMed  Google Scholar 

  126. Pangeni R, Panthi VK, Yoon IS, Park JW. Preparation, characterization, and in vivo evaluation of an oral multiple nanoemulsive system for co-delivery of pemetrexed and quercetin. Pharmaceutics. 2018;10(3):158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jaisamut P, Wanna S, Limsuwan S, Chusri S, Wiwattanawongsa K, Wiwattanapatapee R. Enhanced oral bioavailability and improved biological activities of a quercetin/resveratrol combination using a liquid self-microemulsifying drug delivery system. Planta Med. 2021;87(04):336–46.

    Article  CAS  PubMed  Google Scholar 

  128. Poorani G, Uppuluri S, Uppuluri KB. Formulation, characterization, in vitro and in vivo evaluation of castor oil based self-nano emulsifying levosulpiride delivery systems. J Microencapsul. 2016;33(6):535–43.

    Article  CAS  PubMed  Google Scholar 

  129. Hanemann T, Szabó DV. Polymer-nanoparticle composites: from synthesis to modern applications. Materials. 2010;3(6):3468–517.

    Article  CAS  PubMed Central  Google Scholar 

  130. Mohanraj VJ, Chen YJ. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.

  131. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.

    Article  CAS  Google Scholar 

  132. Mallakpour S, Behranvand VJ. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym Lett. 2016;10(11):895.

    Article  CAS  Google Scholar 

  133. Ipar VS, Dsouza A, Devarajan PV. Enhancing curcumin oral bioavailability through nanoformulations. Eur J Drug Metab Pharmacokinet. 2019;44:459–80.

    Article  CAS  PubMed  Google Scholar 

  134. Nasir A, Kausar A, Younus A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym Plast Technol Eng. 2015;54(4):325–41.

    Article  CAS  Google Scholar 

  135. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces. 2010;80(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  136. El-Gogary RI, Rubio N, Wang JT, Al-Jamal WT, Bourgognon M, Kafa H, Naeem M, Klippstein R, Abbate V, Leroux F, Bals S. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano. 2014;8(2):1384–401.

    Article  CAS  PubMed  Google Scholar 

  137. Kumari A, Kumar V, Yadav SK. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS ONE. 2012;7(7): e41230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Khoee S, Rahmatolahzadeh R. Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: a comprehensive kinetic study. Eur J Med Chem. 2012;50:416–27.

    Article  CAS  PubMed  Google Scholar 

  139. Yin J, Hou Y, Song X, Wang P, Li Y. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int J Nanomed. 2019;14:4045–57.

    Article  CAS  Google Scholar 

  140. Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today. 2012;7(5):467–80.

    Article  CAS  Google Scholar 

  141. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.

    Article  CAS  PubMed  Google Scholar 

  142. Mondon K, Gurny R, Möller M. Colloidal drug delivery systems—recent advances with polymeric micelles. Chimia. 2008;62(10):832.

  143. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–16.

    Article  Google Scholar 

  144. Li C, Guan H, Li Z, Wang F, Wu J, Zhang B. Study on different particle sizes of DOX-loaded mixed micelles for cancer therapy. Colloids Surf B: Biointerfaces. 2020;196: 111303.

    Article  CAS  PubMed  Google Scholar 

  145. Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211–28.

    Article  CAS  PubMed  Google Scholar 

  146. Zhao L, Shi Y, Zou S, Sun M, Li L, Zhai G. Formulation and in vitro evaluation of quercetin loaded polymeric micelles composed of pluronic P123 and D-a-tocopheryl polyethylene glycol succinate. J Biomed Nanotech. 2011;7(3):358–65.

  147. Khonkarn R, Mankhetkorn S, Hennink WE, Okonogi S. PEG-OCL micelles for quercetin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm. 2011;79(2):268–75.

    Article  CAS  PubMed  Google Scholar 

  148. Lu Z, Bu C, Hu W, Zhang H, Liu M, Lu M, Zhai G. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci Biotechnol Biochem. 2018;82(2):238–46.

    Article  CAS  PubMed  Google Scholar 

  149. Solnier J, Chang C, Roh K, Du M, Kuo YC, Hardy M, Lyon M, Gahler R. Quercetin LipoMicel—a novel delivery system to enhance bioavailability of quercetin. J Nat Health Prod Res. 2021;3(2):1–8.

    Article  Google Scholar 

  150. Abbina S, Vappala S, Kumar P, Siren EM, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B. 2017;5(47):9249–77.

    Article  CAS  PubMed  Google Scholar 

  151. Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci. 2013;3(9):142–9.

    Google Scholar 

  152. Lyu Z, Ding L, Huang AT, Kao CL, Peng L. Poly (amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater Today Chem. 2019;13:34–48.

    Article  CAS  Google Scholar 

  153. Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. Pharm Bioallied Sci. 2014;6(3):139.

    Article  Google Scholar 

  154. Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine. 2014;9:1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ramos MC, Horta BA. Drug-loading capacity of PAMAM dendrimers encapsulating quercetin molecules: a molecular dynamics study with the 2016H66 force field. J Chem Inf Model. 2021;61(2):987–1000.

    Article  CAS  PubMed  Google Scholar 

  156. Choi J, Moquin A, Bomal E, Na L, Maysinger D, Kakkar A. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics. Mol Pharm. 2017;14(8):2607–15.

    Article  CAS  PubMed  Google Scholar 

  157. Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021;50(13):7820–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kianfar E. Magnetic nanoparticles in targeted drug delivery: a review. J Supercond Nov Magn. 2021;34(7):1709–35.

    Article  CAS  Google Scholar 

  159. Chandradass J, Jadhav AH, Kim KH, Kim H. Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders. J Alloys Compd. 2012;517:164–9.

  160. Prabhahar MJ, Jaisingh J, Arun Prakash VR. Role of magnetite (Fe3O4)-titania (TiO2) hybrid particle on mechanical, thermal and microwave attenuation behaviour of flexible natural rubber composite in X and Ku band frequencies. Mater Res Express. 2020;7(1):016106.

  161. Rezaei SJ, Malekzadeh AM, Ramazani A, Niknejad H. pH-sensitive magnetite nanoparticles modified with hyperbranched polymers and folic acid for targeted imaging and therapy. Curr Drug Deliv. 2019;16(9):839–48.

    Article  PubMed  Google Scholar 

  162. Akal ZÜ, Alpsoy L, Baykal A. Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. Ceram Int. 2016;42(7):9065–72.

    Article  CAS  Google Scholar 

  163. Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, McAtamney C, MacLoughlin R, Galvin P, Burke CS, Volkov Y. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnology. 2013;11(1):1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N. Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci. 2014;436:234–42.

    Article  PubMed  Google Scholar 

  165. Nathiya S, Durga M, Thiyagarajan D. Quercetin, encapsulated quercetin and its application—a review. Int J Pharm Pharm Sci. 2014;6(10):20–6.

  166. Sadalage PS, Patil RV, Havaldar DV, Gavade SS, Santos AC, Pawar KD. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J Nanobiotechnology. 2021;19(1):1–7.

    Article  Google Scholar 

  167. Milanezi FG, Meireles LM, de Christo Scherer MM, de Oliveira JP, da Silva AR, de Araujo ML, Endringer DC, Fronza M, Guimarães MC, Scherer R. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm J. 2019;27(7):968–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yilmaz M, Karanastasis AA, Chatziathanasiadou MV, Oguz M, Kougioumtzi A, Clemente N, Kellici TF, Zafeiropoulos NE, Avgeropoulos A, Mavromoustakos T, Dianzani U. Inclusion of quercetin in gold nanoparticles decorated with supramolecular hosts amplifies its tumor targeting properties. ACS Appl Bio Mater. 2019;2(7):2715–25.

    Article  CAS  PubMed  Google Scholar 

  169. Das S, Roy P, Mondal S, Bera T, Mukherjee A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B Biointerfaces. 2013;107:27–34.

    Article  CAS  PubMed  Google Scholar 

  170. Palaniswamy M. Size dependent application of biologically synthesized silver nanoparticles against bacterial skin pathogens. Asian J Pharm Clin Res. 2017;10(10):192–5.

    Article  Google Scholar 

  171. Tagde P, Kulkarni GT, Mishra DK, Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol. 2020;56: 101613.

    Article  CAS  Google Scholar 

  172. Das A, Konyak PM, Das A, Dey SK, Saha C. Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial. Heliyon. 2019;5(8): e02372.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gulla S, Lomada D, Araveti PB, Srivastava A, Murikinati MK, Reddy KR, Inamuddin, Reddy MC, Altalhi T. Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. J Nanostructure Chem. 2021;11:721–34.

    Article  CAS  Google Scholar 

  174. Sallam AA, Ahmed MM, El-Magd MA, Magdy A, Ghamry HI, Alshahrani MY, Abou El-Fotoh MF. Quercetin-ameliorated, multi-walled carbon nanotubes-induced immunotoxic, inflammatory, and oxidative effects in mice. Molecules. 2022;27(7):2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-based nanoparticles as drug delivery systems. Pharmaceutics. 2020;12(7):604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Perez-Vizcaino F, Duarte J, Andriantsitohaina R. Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic Res. 2006;40(10):1054–65.

    Article  CAS  PubMed  Google Scholar 

  177. Razzaghi H, Quesnel-Crooks S, Sherman R, Joseph R, Kohler B, Andall-Brereton G, Ivey MA, Edwards BK, Mery L, Gawryszewski V, Saraiya M. Leading causes of cancer mortality—Caribbean region, 2003–2013. Morb Mortal Wkly Rep. 2016;65(49):1395–400.

    Article  Google Scholar 

  178. Yang Z, Liu Y, Liao J, Gong C, Sun C, Zhou X, Wei X, Zhang T, Gao Q, Ma D, Chen G. Retracted: Quercetin induces endoplasmic reticulum stress to enhance c DDP cytotoxicity in ovarian cancer: involvement of STAT 3 signaling. FEBS J. 2015;282(6):1111–25.

    Article  CAS  PubMed  Google Scholar 

  179. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, Huang N. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale. 2012;4(22):7021–30.

    Article  CAS  PubMed  Google Scholar 

  180. Afroze SH, Peddaboina C, Mcdowell AB, Ashraf AZ, Mccormick TC, Newell-Rogers MK, Zawieja DC, Kuehl TJ, Uddin MN. Differential effects of in vitro treatment with cinobufotalin on three types of ovarian cancer cells. Anticancer Res. 2018;38(10):5717–24.

    Article  CAS  PubMed  Google Scholar 

  181. Li N, Sun C, Zhou B, Xing H, Ma D, Chen G, Weng D. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS ONE. 2014;9(7): e100314.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Liu Y, Gong W, Yang ZY, Zhou XS, Gong C, Zhang TR, Wei X, Ma D, Ye F, Gao QL. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis. 2017;22:544–57.

    Article  CAS  PubMed  Google Scholar 

  183. Shen F, Herenyiova M, Weber G. Synergistic down-regulation of signal transduction and cytotoxicity by tiazofurin and quercetin in human ovarian carcinoma cells. Life Sci. 1999;64(21):1869–76.

    Article  CAS  PubMed  Google Scholar 

  184. Teekaraman D, Elayapillai SP, Viswanathan MP, Jagadeesan A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem Biol Interact. 2019;300:91–100.

    Article  CAS  PubMed  Google Scholar 

  185. Cote B, Carlson LJ, Rao DA, Alani AW. Combinatorial resveratrol and quercetin polymeric micelles mitigate doxorubicin induced cardiotoxicity in vitro and in vivo. J Control Release. 2015;213:128–33.

    Article  CAS  PubMed  Google Scholar 

  186. Du G, Lin H, Wang M, Zhang S, Wu X, Lu L, Ji L, Yu L. Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemother Pharmacol. 2010;65:277–87.

    Article  CAS  PubMed  Google Scholar 

  187. Manouchehri JM, Kalafatis M, Lindner D. Evaluation of the efficacy of TRAIL plus quercetin as a potential breast carcinoma therapeutic. Cancer Res. 2016;76:1295–1295.

    Article  Google Scholar 

  188. Huang C, Lee SY, Lin CL, Tu TH, Chen LH, Chen YJ, Huang HC. Co-treatment with quercetin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose causes cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 and AU565 cells. J Agr Food Chem. 2013;61(26):6430–45.

  189. Gulati N, Laudet B, Zohrabian VM, Murali RA, Jhanwar-Uniyal ME. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 2006;26(2A):1177–81.

    CAS  PubMed  Google Scholar 

  190. Lv L, Liu C, Chen C, Yu X, Chen G, Shi Y, Qin F, Ou J, Qiu K, Li G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget. 2016;7(22):32184.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Cao L, Yang Y, Ye Z, Lin B, Zeng J, Li C, Liang T, Zhou K, Li J. Quercetin-3-methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways. Int J Mol Med. 2018;42(3):1625–36.

    CAS  PubMed  Google Scholar 

  192. Khorsandi L, Orazizadeh M, Niazvand F, Abbaspour MR, Mansouri E, Khodadadi AJ. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl Lek Listy. 2017;118(2):123–8.

    CAS  PubMed  Google Scholar 

  193. Zhao X, Wang Q, Yang S, Chen C, Li X, Liu J, Zou Z, Cai D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur J Pharmacol. 2016;781:60–8.

    Article  CAS  PubMed  Google Scholar 

  194. Zuo J, Jiang Y, Zhang E, Chen Y, Liang Z, Zhu J, Zhao Y, Xu H, Liu G, Liu J, Wang W. Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci. 2019;15(227):145–52.

    Article  Google Scholar 

  195. Li S, et al. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother. 2018;100:441–7.

    Article  CAS  PubMed  Google Scholar 

  196. Staedler D, Idrizi E, Kenzaoui BH, Juillerat-Jeanneret L. Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol. 2011;68:1161–72.

    Article  CAS  PubMed  Google Scholar 

  197. Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS ONE. 2015;10(10): e0141370.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wang H, Tao L, Qi K, Zhang H, Feng D, Wei W, Kong H, Chen T, Lin Q. Quercetin reverses tamoxifen resistance in breast cancer cells. J Buon. 2015;20(3):707–13.

    PubMed  Google Scholar 

  199. Lepik D, Jaks V, Kadaja L, Värv S, Maimets T. Electroporation and carrier DNA cause p53 activation, cell cycle arrest, and apoptosis. Anal Biochem. 2003;318(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  200. Park M, Chae HD, Yun J, Jung M, Kim YS, Kim SH, Han MH, Shin DY. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res. 2000;60(3):542–5.

    CAS  PubMed  Google Scholar 

  201. Srinivasan A, Thangavel C, Liu Y, Shoyele S, Den RB, Selvakumar P, Lakshmikuttyamma A. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol Carcinog. 2016;55(5):743–56.

    Article  CAS  PubMed  Google Scholar 

  202. Parker MA, Anderson JK, Corliss DA, Abraria VE, Sidman RL, Park KI, Teng YD, Cotanche DA, Snyder EY. Expression profile of an operationally-defined neural stem cell clone. Ex Neurol. 2005;194(2):320–32.

    Article  CAS  Google Scholar 

  203. Avila MA, Velasco JA, Cansado J, Notario V. Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res. 1994;54(9):2424–8.

    CAS  PubMed  Google Scholar 

  204. Guo W, Yu H, Zhang L, Chen X, Liu Y, Wang Y, Zhang Y. Effect of hyperoside on cervical cancer cells and transcriptome analysis of differentially expressed genes. Cancer Cell Int. 2019;19:1–4.

    Article  Google Scholar 

  205. Bądziul D, Jakubowicz-Gil J, Paduch R, Głowniak K, Gawron A. Combined treatment with quercetin and imperatorin as a potent strategy for killing HeLa and Hep-2 cells. Mol Cell Biochem. 2014;392:213–27.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lv M, Shen Y, Yang J, Li S, Wang B, Chen Z, Li P, Liu P, Yang J. Angiomotin family members: oncogenes or tumor suppressors? Int J Biol Sci. 2017;13(6):772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Luo CL, Liu YQ, Wang P, Song CH, Wang KJ, Dai LP, Zhang JY, Ye H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed Pharmacother. 2016;82:595–605.

    Article  CAS  PubMed  Google Scholar 

  208. Yang MD, Lai KC, Lai TY, Hsu SC, Kuo CL, Yu CS, Lin ML, Yang JS, Kuo HM, Wu SH, Chung JG. Phenethyl isothiocyanate inhibits migration and invasion of human gastric cancer AGS cells through suppressing MAPK and NF-κB signal pathways. Anticancer Res. 2010;30(6):2135–43.

    CAS  PubMed  Google Scholar 

  209. Ho CC, Lai KC, Hsu SC, Kuo CL, Ma CY, Lin ML, Yang JS, Chung JG. Benzyl isothiocyanate (BITC) inhibits migration and invasion of human gastric cancer AGS cells via suppressing ERK signal pathways. Hum Exp Toxicol. 2011;30(4):296–306.

    Article  CAS  PubMed  Google Scholar 

  210. Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, Lin YF, Chung JG. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ Toxicol. 2018;33(11):1168–81.

    Article  CAS  PubMed  Google Scholar 

  211. Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lee HH, Lee S, Shin YS, Cho M, Kang H, Cho H. Anti-cancer effect of quercetin in xenograft models with EBV-associated human gastric carcinoma. Molecules. 2016;21(10):1286.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Hsieh HL, Yu MC, Cheng LC, Chu MY, Huang TH, Yeh TS, Tsai MM. Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells. World J Gastroenterol. 2022;28(11):1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Yamashita H, Kitayama J, Shida D, Yamaguchi H, Mori K, Osada M, Aoki S, Yatomi Y, Takuwa Y, Nagawa H. Sphingosine 1-phosphate receptor expression profile in human gastric cancer cells: differential regulation on the migration and proliferation1. J Surg Res. 2006;130(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  215. Chen M, Duan C, Pan J. Quercetin increases doxorubicin-induced apoptosis through oxidative DNA damage in KATO III gastric cancer cells. Iran Red Crescent Med J. 2021;23(4):1286–1296.

  216. Zhang JY, Lin MT, Zhou MJ, Yi T, Tang YN, Tang SL, Yang ZJ, Zhao ZZ, Chen HB. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules. 2015;20(6):11524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee M, Son M, Ryu E, Shin YS, Kim JG, Kang BW, Sung GH, Cho H, Kang H. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6(14):12603.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Mukherjee A, Khuda-Bukhsh AR. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J Pharmacopuncture. 2015;18(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Moon JH, Eo SK, Lee JH, Park SY. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol Rep. 2015;34(1):375–81.

    Article  CAS  PubMed  Google Scholar 

  220. Chuang CH, Yeh CL, Yeh SL, Lin ES, Wang LY, Wang YH. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J Nutr Biochem. 2016;33:45–53.

    Article  CAS  PubMed  Google Scholar 

  221. Xingyu Z, Peijie M, Dan P, Youg W, Daojun W, Xinzheng C, Xijun Z, Yangrong S. Quercetin suppresses lung cancer growth by targeting Aurora B kinase. Cancer Med. 2016;5(11):3156–65.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Baby B, Antony P, Vijayan R. Interactions of quercetin with receptor tyrosine kinases associated with human lung carcinoma. Nat Prod Res. 2018;32(24):2928–31.

    Article  CAS  PubMed  Google Scholar 

  223. Yousuf M, Khan P, Shamsi A, Shahbaaz M, Hasan GM, Haque QM, Christoffels A, Islam A, Hassan MI. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega. 2020;5(42):27480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Li H, Tan L, Zhang JW, Chen H, Liang B, Qiu T, Li QS, Cai M, Zhang QH. Quercetin is the active component of Yang-Yin-Qing-Fei-Tang to induce apoptosis in non-small cell lung cancer. Am J Chin Med. 2019;47(04):879–93.

    Article  CAS  PubMed  Google Scholar 

  225. Xu D, Chi G, Xu D. Transcriptional regulation of miR-483-3p mediated by IL-6/STAT3 axis promoted epithelial-mesenchymal transition and tumor stemness in glioma. Aging (Albany NY). 2020;12:27480–27491.

  226. Sacks D, Baxter B, Campbell BC, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–32.

    PubMed  Google Scholar 

  227. Wang Q, Chen Y, Lu H, Wang H, Feng H, Xu J, Zhang B. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR-16-5p/WEE1 axis. IUBMB Life. 2020;72(5):1012–22.

    Article  CAS  PubMed  Google Scholar 

  228. Gokbulut AA, Apohan E, Baran Y. Resveratrol and quercetin-induced apoptosis of human 232B4 chronic lymphocytic leukemia cells by activation of caspase-3 and cell cycle arrest. Hematology. 2013;18(3):144–50.

    Article  CAS  PubMed  Google Scholar 

  229. Kogoshi H, Sato T, Koyama T, Nara N, Tohda S. γ-Secretase inhibitors suppress the growth of leukemia and lymphoma cells. Oncol Rep. 2007;18(1):77–80.

    CAS  PubMed  Google Scholar 

  230. Lotfi N, Yousefi Z, Golabi M, Khalilian P, Ghezelbash B, Montazeri M, Shams MH, Baghbadorani PZ, Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: an update. Front Immunol. 2023;14:1077531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Avci CB, Yilmaz S, Dogan ZO, Saydam G, Dodurga Y, Ekiz HA, Kartal M, Sahin F, Baran Y, Gunduz C. Quercetin-induced apoptosis involves increased hTERT enzyme activity of leukemic cells. Hematology. 2011;16(5):303–7.

    Article  CAS  PubMed  Google Scholar 

  232. Kim SH, Yoo ES, Woo JS, Han SH, Lee JH, Jung SH, Kim HJ, Jung JY. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. Eur J Pharmacol. 2019;860: 172568.

    Article  PubMed  Google Scholar 

  233. Lee WJ, Hsiao M, Chang JL, Yang SF, Tseng TH, Cheng CW, Chow JM, Lin KH, Lin YW, Liu CC, Lee LM. Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch Toxicol. 2015;89:1103–17.

    Article  CAS  PubMed  Google Scholar 

  234. Brisdelli F, Coccia C, Cinque B, Cifone MG, Bozzi A. Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Mol Cell Biochem. 2007;296:137–49.

    Article  CAS  PubMed  Google Scholar 

  235. Chen FY, Cao LF, Wan HX, Zhang MY, Cai JY, Shen LJ, Zhong JH, Zhong H. Quercetin enhances adriamycin cytotoxicity through induction of apoptosis and regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase/c-Jun N-terminal kinase signaling in multidrug-resistant leukemia K562 cells. Mol Med Rep. 2015;11(1):341–8.

    Article  CAS  PubMed  Google Scholar 

  236. Naimi A, Entezari A, Hagh MF, Hassanzadeh A, Saraei R, Solali S. Quercetin sensitizes human myeloid leukemia KG-1 cells against TRAIL-induced apoptosis. J Cell Physiol. 2019;234(8):13233–41.

    Article  CAS  PubMed  Google Scholar 

  237. Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, Nikitovic D. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38(2):819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016;6(1):1–3.

    Article  Google Scholar 

  239. Ueda K, Ito E, Karayama M, Ohsaki E, Nakano K, Watanabe S. KSHV-infected PEL cell lines exhibit a distinct gene expression profile. Biochem Biophys Res Commun. 2010;394(3):482–7.

    Article  CAS  PubMed  Google Scholar 

  240. Aresté C, Blackbourn DJ. Modulation of the immune system by Kaposi’s sarcoma-associated herpesvirus. Trends Microbiol. 2009;17(3):119–29.

    Article  PubMed  Google Scholar 

  241. Granato M, Rizzello C, Montani MS, Cuomo L, Vitillo M, Santarelli R, Gonnella R, D’Orazi G, Faggioni A, Cirone M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124–36.

    Article  CAS  PubMed  Google Scholar 

  242. Alvarez MC, Maso V, Torello CO, Ferro KP, Saad ST. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin Epigenetics. 2018;10:1–1.

    Article  Google Scholar 

  243. Kumar R, Saini KS, Kumar A, Kumar S, Ramakrishna E, Maurya R, Konwar R, Chattopadhyay N. Quercetin-6-C-β-D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor. Biochimie. 2015;119:68–79.

  244. Shoskes DA. Treatment response to conventional and novel therapies in chronic prostatitis. Curr Urol Rep. 2003;4(4):311–5.

    Article  PubMed  Google Scholar 

  245. Al-Jabban SM, Zhang X, Chen G, Mekuria EA, Rakotondraibe LH, Chen QH. Synthesis and anti-proliferative effects of quercetin derivatives. Nat Prod Commun. 2015;10(12):2113–8.

  246. Mousavi N, Rahimi S, Emami H, Kazemi AH, Kashi RM, Heidarian R. The effect of quercetin nanosuspension on prostate cancer cell line LNCaP via Hedgehog signaling pathway. Rep Biochem Mol Biol. 2021;10(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Bhat FA, Sharmila G, Balakrishnan S, Arunkumar R, Elumalai P, Suganya S, Singh PR, Srinivasan N, Arunakaran J. Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. J Nutr Biochem. 2014;25(11):1132–9.

    Article  CAS  PubMed  Google Scholar 

  248. Ward AB, Mir H, Kapur N, Gales DN, Carriere PP, Singh S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol. 2018;16(1):1–2.

    Article  Google Scholar 

  249. Yang F, Song L, Wang H, Wang J, Xu Z, Xing N. Quercetin in prostate cancer: chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential. Oncol Rep. 2015;33(6):2659–68.

    Article  CAS  PubMed  Google Scholar 

  250. Su Z, Liu T, Hong G. Quercetin suppress prostatic cancer biological activity in vitro and vivo study. J Biomater Tissue Eng. 2018;8(7):949–61.

    Article  Google Scholar 

  251. Seeni A, Takahashi S, Takeshita K, Tang M, Sugiura S, Sato SY, Shirai T. Suppression of prostate cancer growth by resveratrol in the transgenic rat for adenocarcinoma of prostate (TRAP) model. Asian Pac J Cancer Prev. 2008;9(1):7–14.

    PubMed  Google Scholar 

  252. Xing N, Chen Y, Mitchell SH, Young CY. Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis. 2001;22(3):409–14.

    Article  CAS  PubMed  Google Scholar 

  253. Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther. 2007;6(9):2591–9.

    Article  CAS  PubMed  Google Scholar 

  254. Siegelin MD, Reuss DE, Habel A, Rami A, Von Deimling A. Quercetin promotes degradation of survivin and thereby enhances death-receptor–mediated apoptosis in glioma cells. Neuro Oncol. 2009;11(2):122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Cao HH, Cheng CY, Su T, Fu XQ, Guo H, Li T, Tse AK, Kwan HY, Yu H, Yu ZL. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol Cancer. 2015;14:1–2.

    Article  CAS  Google Scholar 

  256. Catanzaro D, Ragazzi E, Vianello C, Caparrotta L, Montopoli M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat Prod Commun. 2015;10(8):1365–8.

    PubMed  Google Scholar 

  257. Suh DK, Lee EJ, Kim HC, Kim JH. Induction of G 1/S phase arrest and apoptosis by quercetin in human osteosarcoma cells. Arch Pharm Res. 2010;33:781–5.

    Article  CAS  PubMed  Google Scholar 

  258. Saneja A, Kaushik P, Kaushik D, Kumar S, Kumar D. Antioxidant, analgesic and anti-inflammatory activities of Santalum album Linn. Planta Med. 2009;75(04):102.

    Article  Google Scholar 

  259. Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet. 2019;44:169–77.

    Article  CAS  PubMed  Google Scholar 

  260. Di Pierro F, Khan A, Iqtadar S, Mumtaz SU, Chaudhry MN, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P. Quercetin as a possible complementary agent for early-stage COVID-19: concluding results of a randomized clinical trial. Front Pharmacol. 2023;13:1096853.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Thorne. Quercetin Phytosome. Available at: https://www.thorne.com/products/dp/quercetin-phytosome. Accessed 23 Jun 2023.

  262. Codeage. Nanofood liposomal liquid quercetin phytosome. Available at: https://www.codeage.com/products/liposomal-quercetin-phytosome-liquid. Accessed 23 Jun 2023.

  263. One Planet Nutrition. Nano Quercetin. Available at: https://www.oneplanetnutrition.com/index.php/shop#!/Nano-Quercetin-240-Caps-250-mg/p/478601707. Accessed 23 Jun 2023.

Download references

Acknowledgments

Vanashree H. Chaudhari is thankful to the Indian Council of Medical Research, Government of India, for the fellowship provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma V. Devarajan.

Ethics declarations

Conflict of Interest

Esha S. Attar, Vanashree H. Chaudhari, Chaitanya G. Deokar, Sathish Dyawanapelly, and Padma V. Devarajan report that they have no conflict of interest to declare.

Author Contributions

Esha S. Attar and Vanashree H. Chaudhari: conceptualization, writing—original draft, writing—review, and editing. Chaitanya G. Deokar: writing—original draft. Sathish Dyawanapelly: visualization, writing—review, and editing. Padma V. Devarajan: conceptualization, supervision, writing—review, and editing.

Ethical Approval

Not applicable.

Funding

No funding was received in the preparation of this manuscript.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

All data are included in the manuscript.

Code Availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attar, E.S., Chaudhari, V.H., Deokar, C.G. et al. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 48, 495–514 (2023). https://doi.org/10.1007/s13318-023-00843-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-023-00843-7

Navigation