Skip to main content
Log in

Is Monitoring of the Intracellular Active Metabolite Levels of Nucleobase and Nucleoside Analogs Ready for Precision Medicine Applications?

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Nucleobase and nucleoside analogs (NAs) play important roles in cancer therapy. Although there are obvious individual differences in NA treatments, most NAs lack direct relationships between their plasma concentration and efficacy or adverse effects. Accumulating evidence suggests that the intracellular active metabolite levels of NAs predict patient outcomes. This article reviewed the relationships between NA intracellular active metabolite levels and their efficacy or adverse effects. The factors affecting the formation of intracellular active metabolites and combination regimens that elevate intracellular active metabolite levels were also reviewed. Given the mechanism of NA cytotoxicity, NA intracellular active metabolite levels may be predictive of clinical outcomes. Many clinical studies support this hypothesis. Therefore, the monitoring of intracellular active metabolite levels is beneficial for individualized NA treatment. However, to perform clinical monitoring in practice, well-designed studies are needed to explore the optimal threshold or range and the appropriate regimen adjustment strategies based on these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and nucleoside analogues: resistance and re-sensitisation at the level of pharmacokinetics, pharmacodynamics and metabolism. Cancers (Basel). 2018;10:240.

    Article  Google Scholar 

  2. Jing WY, Yulu L, Xi Z, Qi P. Review of therapeutic drug monitoring of anticancer drugs. Chin J Clin Pharmacol. 2018;34:2889–93.

    Google Scholar 

  3. Yamauchi T, Kawai Y, Goto N, Kishi S, Imamura S, Yoshida A, Urasaki Y, Fukushima T, Iwasaki H, Tsutani H, Masada M, Ueda T. Close correlation of 1-β-d-arabinofuranosylcytosine 5′-triphosphate, an intracellular active metabolite, to the therapeutic efficacy of N(4)-behenoyl-1-β-d-arabinofuranosylcytosine therapy for acute myelogenous leukemia. Jpn J Cancer Res. 2001;92:975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Chen P, Wang J, Santhanam R, Aimiuwu J, Saradhi UV, Liu Z, Schwind S, Mims A, Byrd JC, Grever MR, Villalona-Calero MA, Klisovic R, Walker A, Garzon R, Blum W, Chan KK, Marcucci G. In vivo quantification of active decitabine-triphosphate metabolite: a novel pharmacoanalytical endpoint for optimization of hypomethylating therapy in acute myeloid leukemia. AAPS J. 2013;15:242–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kantarjian H, Gandhi V, Cortes J, Verstovsek S, Du M, Garcia-Manero G, Giles F, Faderl S, O’Brien S, Jeha S, Davis J, Shaked Z, Craig A, Keating M, Plunkett W, Freireich EJ. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood. 2003;102:2379–86.

    Article  CAS  PubMed  Google Scholar 

  6. Goirand F, Lemaitre F, Launay M, Tron C, Chatelut E, Boyer JC, Bardou M, Schmitt A. How can we best monitor 5-FU administration to maximize benefit to risk ratio? Expert Opin Drug Metab Toxicol. 2018;14:1303–13.

    Article  CAS  PubMed  Google Scholar 

  7. Cerqueira NM, Fernandes PA, Ramos MJ. Understanding ribonucleotide reductase inactivation by gemcitabine. Chemistry. 2007;13:8507–15.

    Article  CAS  PubMed  Google Scholar 

  8. Esin E, Telli TA, Yuce D, Yalcin SA. Correlation study of fluorouracil pharmacodynamics with clinical efficacy and toxicity. Tumori. 2018;104:157–64.

    Article  CAS  PubMed  Google Scholar 

  9. Saif MW, Choma A, Salamone SJ, Chu E. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst. 2009;101:1543–52.

    Article  CAS  PubMed  Google Scholar 

  10. Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, Dorval E, Piot G, Morel A, Boisdron-Celle M. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:2099–105.

    Article  CAS  PubMed  Google Scholar 

  11. Long-Boyle JR, Green KG, Brunstein CG, Cao Q, Rogosheske J, Weisdorf DJ, Miller JS, Wagner JE, McGlave PB, Jacobson PA. High fludarabine exposure and relationship with treatment-related mortality after nonmyeloablative hematopoietic cell transplantation. Bone Marrow Transplant. 2011;46:20–6.

    Article  CAS  PubMed  Google Scholar 

  12. Langenhorst JB, van Kesteren C, van Maarseveen EM, Dorlo TPC, Nierkens S, Lindemans CA, de Witte MA, van Rhenen A, Raijmakers R, Bierings M, Kuball J, Huitema ADR, Boelens JJ. Fludarabine exposure in the conditioning prior to allogeneic hematopoietic cell transplantation predicts outcomes. Blood Adv. 2019;3:2179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanghavi K, Wiseman A, Kirstein MN, Cao Q, Brundage R, Jensen K, Rogosheske J, Kurtzweil A, Long-Boyle J, Wagner J, Warlick ED, Brunstein CG, Weisdorf DJ, Jacobson PA. Personalized fludarabine dosing to reduce nonrelapse mortality in hematopoietic stem-cell transplant recipients receiving reduced intensity conditioning. Transl Res. 2016;175:103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Capizzi RL, Yang JL, Cheng E, Bjornsson T, Sahasrabudhe D, Tan RS, Cheng YC. Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia. J Clin Oncol. 1983;1:763–71.

    Article  CAS  PubMed  Google Scholar 

  15. Ciccolini J, Serdjebi C, Le Thi Thu H, Lacarelle B, Milano G, Fanciullino R. Nucleoside analogs: ready to enter the era of precision medicine? Expert Opin Drug Metab Toxicol. 2016;12:865–77.

    Article  CAS  PubMed  Google Scholar 

  16. Kearns CM, Blakley RL, Santana VM, Crom WR. Pharmacokinetics of cladribine (2-chlorodeoxyadenosine) in children with acute leukemia. Cancer Res. 1994;54:1235–9.

    CAS  PubMed  Google Scholar 

  17. Tabata M, Kozuki T, Ueoka H, Kiura K, Harita S, Tada A, Shibayama T, Takigawa N, Yonei T, Gemba K, Segawa Y, Kishino D, Tada S, Hiraki S, Tanimoto M, Okayama Lung Cancer Study G. A triplet chemotherapy with cisplatin, docetaxel and gemcitabine in patients with advanced non-small-cell lung cancer: a phase I/II study. Cancer Chemother Pharmacol. 2007;60:53–9.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson SA. Clinical pharmacokinetics of nucleoside analogues, focus on haematological malignancies. Clin Pharmacokinet. 2000;39:5–26.

    Article  CAS  PubMed  Google Scholar 

  19. Schmiegelow K, Nielsen SN, Frandsen TL, Nersting J. Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction. J Pediatr Hematol Oncol. 2014;36:503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bostrom B, Erdmann G. Cellular pharmacology of 6-mercaptopurine in acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol. 1993;15:80–6.

    Article  CAS  PubMed  Google Scholar 

  21. Derissen EJB, Beijnen JH. Intracellular pharmacokinetics of pyrimidine analogues used in oncology and the correlation with drug action. Clin Pharmacokinet. 2020;59:1521–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koczor CA, Torres RA, Lewis W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol. 2012;8:665–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woodahl EL, Wang J, Heimfeld S, Ren AG, McCune JS. Imatinib inhibition of fludarabine uptake in T-lymphocytes. Cancer Chemother Pharmacol. 2008;62:735–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shigemi H, Yamauchi T, Tanaka Y, Ueda T. Novel leukemic cell lines resistant to clofarabine by mechanisms of decreased active metabolite and increased antiapoptosis. Cancer Sci. 2013;104:732–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hubeek I, Stam RW, Peters GJ, Broekhuizen R, Meijerink JP, van Wering ER, Gibson BE, Creutzig U, Zwaan CM, Cloos J, Kuik DJ, Pieters R, Kaspers GJ. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer. 2005;93:1388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marce S, Molina-Arcas M, Villamor N, Casado FJ, Campo E, Pastor-Anglada M, Colomer D. Expression of human equilibrative nucleoside transporter 1 (hENT1) and its correlation with gemcitabine uptake and cytotoxicity in mantle cell lymphoma. Haematologica. 2006;91:895–902.

    CAS  PubMed  Google Scholar 

  27. Marechal R, Mackey JR, Lai R, Demetter P, Peeters M, Polus M, Cass CE, Young J, Salmon I, Deviere J, Van Laethem JL. Human equilibrative nucleoside transporter 1 and human concentrative nucleoside transporter 3 predict survival after adjuvant gemcitabine therapy in resected pancreatic adenocarcinoma. Clin Cancer Res. 2009;15:2913–9.

    Article  CAS  PubMed  Google Scholar 

  28. Galmarini CM, Thomas X, Calvo F, Rousselot P, Rabilloud M, El Jaffari A, Cros E, Dumontet C. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol. 2002;117:860–8.

    Article  CAS  PubMed  Google Scholar 

  29. Murata A, Amano R, Yamada N, Kimura K, Yashiro M, Nakata B, Hirakawa K. Prognostic predictive values of gemcitabine sensitivity-related gene products for unresectable or recurrent biliary tract cancer treated with gemcitabine alone. World J Surg Oncol. 2013;11:117.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu L, Shi W, Li X, Chang C, Xu F, He Q, Wu D, Su J, Zhou L, Song L, Xiao C, Zhang Z. High expression of the human equilibrative nucleoside transporter 1 gene predicts a good response to decitabine in patients with myelodysplastic syndrome. J Transl Med. 2016;14:66.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wright AM, Gati WP, Paterson AR. Enhancement of retention and cytotoxicity of 2-chlorodeoxyadenosine in cultured human leukemic lymphoblasts by nitrobenzylthioinosine, an inhibitor of equilibrative nucleoside transport. Leukemia. 2000;14:52–60.

    Article  CAS  PubMed  Google Scholar 

  32. Nagai S, Takenaka K, Nachagari D, Rose C, Domoney K, Sun D, Sparreboom A, Schuetz JD. Deoxycytidine kinase modulates the impact of the ABC transporter ABCG2 on clofarabine cytotoxicity. Cancer Res. 2011;71:1781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fukuda Y, Schuetz JD. ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol. 2012;83:1073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. White JC, Rathmell JP, Capizzi RL. Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells. J Clin Invest. 1987;79:380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kessel D, Hall TC, Rosenthal D. Uptake and phosphorylation of cytosine arabinoside by normal and leukemic human blood cells in vitro. Cancer Res. 1969;29:459–63.

    CAS  PubMed  Google Scholar 

  36. Donnette M, Solas C, Giocanti M, Venton G, Farnault L, Berda-Haddad Y, Hau LTT, Costello R, Ouafik L, Lacarelle B, Ciccolini J, Fanciullino R. Simultaneous determination of cytosine arabinoside and its metabolite uracil arabinoside in human plasma by LC-MS/MS: application to pharmacokinetics–pharmacogenetics pilot study in AML patients. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1126–1127: 121770.

    Article  PubMed  Google Scholar 

  37. Levin M, Stark M, Berman B, Assaraf YG. Surmounting Cytarabine-resistance in acute myeloblastic leukemia cells and specimens with a synergistic combination of hydroxyurea and azidothymidine. Cell Death Dis. 2019;10:390.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lorkova L, Scigelova M, Arrey TN, Vit O, Pospisilova J, Doktorova E, Klanova M, Alam M, Vockova P, Maswabi B, Klener P Jr, Petrak J. Detailed functional and proteomic characterization of fludarabine resistance in mantle cell lymphoma cells. PLoS ONE. 2015;10: e0135314.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Klanova M, Lorkova L, Vit O, Maswabi B, Molinsky J, Pospisilova J, Vockova P, Mavis C, Lateckova L, Kulvait V, Vejmelkova D, Jaksa R, Hernandez F, Trneny M, Vokurka M, Petrak J, Klener P Jr. Downregulation of deoxycytidine kinase in cytarabine-resistant mantle cell lymphoma cells confers cross-resistance to nucleoside analogs gemcitabine, fludarabine and cladribine, but not to other classes of anti-lymphoma agents. Mol Cancer. 2014;13:159.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mansson E, Flordal E, Liliemark J, Spasokoukotskaja T, Elford H, Lagercrantz S, Eriksson S, Albertioni F. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem Pharmacol. 2003;65:237–47.

    Article  CAS  PubMed  Google Scholar 

  41. Huang M, Inukai T, Miyake K, Tanaka Y, Kagami K, Abe M, Goto H, Minegishi M, Iwamoto S, Sugihara E, Watanabe A, Somazu S, Shinohara T, Oshiro H, Akahane K, Goi K, Sugita K. Clofarabine exerts antileukemic activity against cytarabine-resistant B-cell precursor acute lymphoblastic leukemia with low deoxycytidine kinase expression. Cancer Med. 2018;7:1297–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang DY, Yuan XQ, Yan H, Cao S, Zhang W, Li XL, Zeng H, Chen XP. Association between DCK 35708 T>C variation and clinical outcomes of acute myeloid leukemia in South Chinese patients. Pharmacogenomics. 2016;17:1519–31.

    Article  CAS  PubMed  Google Scholar 

  43. Shi JY, Shi ZZ, Zhang SJ, Zhu YM, Gu BW, Li G, Bai XT, Gao XD, Hu J, Jin W, Huang W, Chen Z, Chen SJ. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics. 2004;14:759–68.

    Article  CAS  PubMed  Google Scholar 

  44. Konoplev SN, Fritsche HA, O’Brien S, Wierda WG, Keating MJ, Gornet TG, St Romain S, Wang X, Inamdar K, Johnson MR, Medeiros LJ, Bueso-Ramos CE. High serum thymidine kinase 1 level predicts poorer survival in patients with chronic lymphocytic leukemia. Am J Clin Pathol. 2010;134:472–7.

    Article  PubMed  Google Scholar 

  45. Wang L, Munch-Petersen B, Herrstrom Sjoberg A, Hellman U, Bergman T, Jornvall H, Eriksson S. Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates. FEBS Lett. 1999;443:170–4.

    Article  CAS  PubMed  Google Scholar 

  46. Di Cresce C, Figueredo R, Rytelewski M, Maleki Vareki S, Way C, Ferguson PJ, Vincent MD, Koropatnick J. siRNA knockdown of mitochondrial thymidine kinase 2 (TK2) sensitizes human tumor cells to gemcitabine. Oncotarget. 2015;6:22397–409.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Seve P, Mackey JR, Isaac S, Tredan O, Souquet PJ, Perol M, Cass C, Dumontet C. cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer. Lung Cancer. 2005;49:363–70.

    Article  PubMed  Google Scholar 

  48. Cheong HS, Koh Y, Ahn KS, Lee C, Shin HD, Yoon SS. NT5C3 polymorphisms and outcome of first induction chemotherapy in acute myeloid leukemia. Pharmacogenet Genomics. 2014;24:436–41.

    Article  CAS  PubMed  Google Scholar 

  49. Yamauchi T, Negoro E, Kishi S, Takagi K, Yoshida A, Urasaki Y, Iwasaki H, Ueda T. Intracellular cytarabine triphosphate production correlates to deoxycytidine kinase/cytosolic 5′-nucleotidase II expression ratio in primary acute myeloid leukemia cells. Biochem Pharmacol. 2009;77:1780–6.

    Article  CAS  PubMed  Google Scholar 

  50. Schneider C, Oellerich T, Baldauf HM, Schwarz SM, Thomas D, Flick R, Bohnenberger H, Kaderali L, Stegmann L, Cremer A, Martin M, Lohmeyer J, Michaelis M, Hornung V, Schliemann C, Berdel WE, Hartmann W, Wardelmann E, Comoglio F, Hansmann ML, Yakunin AF, Geisslinger G, Strobel P, Ferreiros N, Serve H, Keppler OT, Cinatl J Jr. SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia. Nat Med. 2017;23:250–5.

    Article  PubMed  Google Scholar 

  51. An Q, Robins P, Lindahl T, Barnes DE. 5-Fluorouracil incorporated into DNA is excised by the Smug1 DNA glycosylase to reduce drug cytotoxicity. Cancer Res. 2007;67:940–5.

    Article  CAS  PubMed  Google Scholar 

  52. Ladner RD. The role of dUTPase and uracil-DNA repair in cancer chemotherapy. Curr Protein Pept Sci. 2001;2:361–70.

    Article  CAS  PubMed  Google Scholar 

  53. Kato M. NUDT15: a major determinant of thiopurine sensitivity in Asians. Pediatr Int. 2021;63:748–9.

    Article  CAS  PubMed  Google Scholar 

  54. Matsuoka K. NUDT15 gene variants and thiopurine-induced leukopenia in patients with inflammatory bowel disease. Intest Res. 2020;18:275–81.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Riva-Lavieille C, Ressayre C, Barra Y, Carcassonne Y, Iliadis A. Calculation of individual dosage regimen of cytosine arabinoside (ara-C) based on metabolite levels in leukemic cells. Ther Drug Monit. 1994;16:375–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kantarjian HM, Estey EH, Plunkett W, Keating MJ, Walters RS, Iacoboni S, McCredie KB, Freireich EJ. Phase I-II clinical and pharmacologic studies of high-dose cytosine arabinoside in refractory leukemia. Am J Med. 1986;81:387–94.

    Article  CAS  PubMed  Google Scholar 

  57. Gearry RB, Barclay ML. Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. J Gastroenterol Hepatol. 2005;20:1149–57.

    Article  CAS  PubMed  Google Scholar 

  58. Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut. 2001;48:642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee JH, Kim TJ, Kim ER, Hong SN, Chang DK, Choi LH, Woo HI, Lee SY, Kim YH. Measurements of 6-thioguanine nucleotide levels with TPMT and NUDT15 genotyping in patients with Crohn’s disease. PLoS ONE. 2017;12: e0188925.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu Q, Wang Y, Mei Q, Han W, Hu J, Hu N. Measurement of red blood cell 6-thioguanine nucleotide is beneficial in azathioprine maintenance therapy of Chinese Crohn’s disease patients. Scand J Gastroenterol. 2016;51:1093–9.

    Article  CAS  PubMed  Google Scholar 

  61. Lilleyman JS, Lennard L. Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet. 1994;343:1188–90.

    Article  CAS  PubMed  Google Scholar 

  62. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999;93:2817–23.

    Article  CAS  PubMed  Google Scholar 

  63. Nielsen SN, Grell K, Nersting J, Abrahamsson J, Lund B, Kanerva J, Jonsson OG, Vaitkeviciene G, Pruunsild K, Hjalgrim LL, Schmiegelow K. DNA-thioguanine nucleotide concentration and relapse-free survival during maintenance therapy of childhood acute lymphoblastic leukaemia (NOPHO ALL2008): a prospective substudy of a phase 3 trial. Lancet Oncol. 2017;18:515–24.

    Article  CAS  PubMed  Google Scholar 

  64. Hedeland RL, Hvidt K, Nersting J, Rosthoj S, Dalhoff K, Lausen B, Schmiegelow KDNA. incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma. Cancer Chemother Pharmacol. 2010;66:485–91.

    Article  CAS  PubMed  Google Scholar 

  65. Nielsen SN, Grell K, Nersting J, Frandsen TL, Hjalgrim LL, Schmiegelow K. Measures of 6-mercaptopurine and methotrexate maintenance therapy intensity in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2016;78:983–94.

    Article  CAS  PubMed  Google Scholar 

  66. Tempero M, Plunkett W, Ruiz Van Haperen V, Hainsworth J, Hochster H, Lenzi R, Abbruzzese J. Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol. 2003;21:3402–8.

    Article  CAS  PubMed  Google Scholar 

  67. Dehua Z, Mingming C, Jisheng W. Meta-analysis of gemcitabine in brief versus prolonged low-dose infusion for advanced non-small cell lung cancer. PLoS ONE. 2018;13: e0193814.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Eriksson S, Arner E, Spasokoukotskaja T, Wang L, Karlsson A, Brosjo O, Gunven P, Julusson G, Liliemark J. Properties and levels of deoxynucleoside kinases in normal and tumor cells; implications for chemotherapy. Adv Enzyme Regul. 1994;34:13–25.

    Article  CAS  PubMed  Google Scholar 

  69. Jansen RS, Rosing H, Wijermans PW, Keizer RJ, Schellens JH, Beijnen JH. Decitabine triphosphate levels in peripheral blood mononuclear cells from patients receiving prolonged low-dose decitabine administration: a pilot study. Cancer Chemother Pharmacol. 2012;69:1457–66.

    Article  CAS  PubMed  Google Scholar 

  70. Rogstad DK, Herring JL, Theruvathu JA, Burdzy A, Perry CC, Neidigh JW, Sowers LC. Chemical decomposition of 5-aza-2′-deoxycytidine (Decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry. Chem Res Toxicol. 2009;22:1194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roosendaal J, Rosing H, Lucas L, Oganesian A, Schellens JHM, Beijnen JH. Development, validation, and clinical application of a high-performance liquid chromatography-tandem mass spectrometry assay for the quantification of total intracellular β-decitabine nucleotides and genomic DNA incorporated β-decitabine and 5-methyl-2′-deoxycytidine. J Pharm Biomed Anal. 2019;164:16–26.

    Article  CAS  PubMed  Google Scholar 

  72. Danhauser L, Plunkett W, Keating M, Cabanillas F. 9-β-d-arabinofuranosyl-2-fluoroadenine 5′-monophosphate pharmacokinetics in plasma and tumor cells of patients with relapsed leukemia and lymphoma. Cancer Chemother Pharmacol. 1986;18:145–52.

    Article  CAS  PubMed  Google Scholar 

  73. Gandhi V, Kemena A, Keating MJ, Plunkett W. Cellular pharmacology of fludarabine triphosphate in chronic lymphocytic leukemia cells during fludarabine therapy. Leuk Lymphoma. 1993;10:49–56.

    Article  CAS  PubMed  Google Scholar 

  74. Albertioni F, Lindemalm S, Reichelova V, Pettersson B, Eriksson S, Juliusson G, Liliemark J. Pharmacokinetics of cladribine in plasma and its 5′-monophosphate and 5′-triphosphate in leukemic cells of patients with chronic lymphocytic leukemia. Clin Cancer Res. 1998;4:653–8.

    CAS  PubMed  Google Scholar 

  75. Gandhi V, Plunkett W. Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet. 2002;41:93–103.

    Article  CAS  PubMed  Google Scholar 

  76. Haselager MV, Kater AP, Eldering E. Proliferative signals in chronic lymphocytic leukemia; what are we missing? Front Oncol. 2020;10: 592205.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nygaard U, Toft N, Schmiegelow K. Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin Pharmacol Ther. 2004;75:274–81.

    Article  CAS  PubMed  Google Scholar 

  78. Adam de Beaumais T, Fakhoury M, Medard Y, Azougagh S, Zhang D, Yakouben K, Jacqz-Aigrain E. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharmacol. 2011;71:575–84.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Miller MB, Brackett J, Schafer ES, Rau RE. Prevention of mercaptopurine-induced hypoglycemia using allopurinol to reduce methylated thiopurine metabolites. Pediatr Blood Cancer. 2019;66: e27577.

    CAS  PubMed  Google Scholar 

  80. van Gennep S, Konte K, Meijer B, Heymans MW, D’Haens GR, Lowenberg M, de Boer NKH. Systematic review with meta-analysis: risk factors for thiopurine-induced leukopenia in IBD. Aliment Pharmacol Ther. 2019;50:484–506.

    Article  PubMed  Google Scholar 

  81. Wong DR, Coenen MJ, Vermeulen SH, Derijks LJ, van Marrewijk CJ, Klungel OH, Scheffer H, Franke B, Guchelaar HJ, de Jong DJ, Engels LG, Verbeek AL, Hooymans PM, team Tr. Early assessment of thiopurine metabolites identifies patients at risk of thiopurine-induced leukopenia in inflammatory bowel disease. J Crohns Colitis. 2017;11:175–84.

    Article  PubMed  Google Scholar 

  82. Zhou Y, Wang L, Zhai XY, Wen L, Tang F, Yang F, Liu XT, Dong L, Zhi LJ, Shi HY, Hao GX, Zheng Y, Jacqz-Aigrain E, Wang TY, Zhao W. Precision therapy of 6-mercaptopurine in Chinese children with acute lymphoblastic leukaemia. Br J Clin Pharmacol. 2020;86(8):1519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chrzanowska M, Kolecki P, Duczmal-Cichocka B, Fiet J. Metabolites of mercaptopurine in red blood cells: a relationship between 6-thioguanine nucleotides and 6-methylmercaptopurine metabolite concentrations in children with lymphoblastic leukemia. Eur J Pharm Sci. 1999;8:329–34.

    Article  CAS  PubMed  Google Scholar 

  84. Gandhi V, Estey E, Keating MJ, Plunkett W. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993;11:116–24.

    Article  CAS  PubMed  Google Scholar 

  85. Gandhi V, Estey E, Keating MJ, Plunkett W. Biochemical modulation of arabinosylcytosine for therapy of leukemias. Leuk Lymphoma. 1993;10(Suppl):109–14.

    Article  PubMed  Google Scholar 

  86. Cividini F, Pesi R, Chaloin L, Allegrini S, Camici M, Cros-Perrial E, Dumontet C, Jordheim LP, Tozzi MG. The purine analog fludarabine acts as a cytosolic 5′-nucleotidase II inhibitor. Biochem Pharmacol. 2015;94:63–8.

    Article  CAS  PubMed  Google Scholar 

  87. Tseng WC, Derse D, Cheng YC, Brockman RW, Bennett LL Jr. In vitro biological activity of 9-β-d-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells. Mol Pharmacol. 1982;21:474–7.

    CAS  PubMed  Google Scholar 

  88. Estey E, Plunkett W, Gandhi V, Rios MB, Kantarjian H, Keating MJ. Fludarabine and arabinosylcytosine therapy of refractory and relapsed acute myelogenous leukemia. Leuk Lymphoma. 1993;9:343–50.

    Article  CAS  PubMed  Google Scholar 

  89. Cooper T, Ayres M, Nowak B, Gandhi V. Biochemical modulation of cytarabine triphosphate by clofarabine. Cancer Chemother Pharmacol. 2005;55:361–8.

    Article  CAS  PubMed  Google Scholar 

  90. Gandhi V, Estey E, Keating MJ, Chucrallah A, Plunkett W. Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood. 1996;87:256–64.

    Article  CAS  PubMed  Google Scholar 

  91. Thomas X, de Botton S, Chevret S, Caillot D, Raffoux E, Lemasle E, Marolleau JP, Berthon C, Pigneux A, Vey N, Reman O, Simon M, Recher C, Cahn JY, Hermine O, Castaigne S, Celli-Lebras K, Ifrah N, Preudhomme C, Terre C, Dombret H. Randomized phase II study of clofarabine-based consolidation for younger adults with acute myeloid leukemia in first remission. J Clin Oncol. 2017;35:1223–30.

    Article  CAS  PubMed  Google Scholar 

  92. Donadieu J, Bernard F, van Noesel M, Barkaoui M, Bardet O, Mura R, Arico M, Piguet C, Gandemer V, ArmariAlla C, Clausen N, Jeziorski E, Lambilliote A, Weitzman S, Henter JI, Van Den Bos C, Salvage Group of the Histiocyte S. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study. Blood. 2015;126:1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brackett J, Schafer ES, Leung DH, Bernhardt MB. Use of allopurinol in children with acute lymphoblastic leukemia to reduce skewed thiopurine metabolism. Pediatr Blood Cancer. 2014;61:1114–7.

    Article  CAS  PubMed  Google Scholar 

  94. Giamanco NM, Cunningham BS, Klein LS, Parekh DS, Warwick AB, Lieuw K. Allopurinol use during maintenance therapy for acute lymphoblastic leukemia avoids mercaptopurine-related hepatotoxicity. J Pediatr Hematol Oncol. 2016;38:147–51.

    Article  CAS  PubMed  Google Scholar 

  95. Friedman AB, Brown SJ, Bampton P, Barclay ML, Chung A, Macrae FA, McKenzie J, Reynolds J, Gibson PR, Hanauer SB, Sparrow MP. Randomised clinical trial: efficacy, safety and dosage of adjunctive allopurinol in azathioprine/mercaptopurine nonresponders (AAA Study). Aliment Pharmacol Ther. 2018;47:1092–102.

    Article  CAS  PubMed  Google Scholar 

  96. Deplanque G, Demarchi M, Hebbar M, Flynn P, Melichar B, Atkins J, Nowara E, Moye L, Piquemal D, Ritter D, Dubreuil P, Mansfield CD, Acin Y, Moussy A, Hermine O, Hammel PA. randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann Oncol. 2015;26:1194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hammam K, Saez-Ayala M, Rebuffet E, Gros L, Lopez S, Hajem B, Humbert M, Baudelet E, Audebert S, Betzi S, Lugari A, Combes S, Letard S, Casteran N, Mansfield C, Moussy A, De Sepulveda P, Morelli X, Dubreuil P. Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nat Commun. 2017;8:1420.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Damaraju VL, Scriver T, Mowles D, Kuzma M, Ryan AJ, Cass CE, Sawyer MB. Erlotinib, gefitinib, and vandetanib inhibit human nucleoside transporters and protect cancer cells from gemcitabine cytotoxicity. Clin Cancer Res. 2014;20:176–86.

    Article  CAS  PubMed  Google Scholar 

  99. Kreis W, Budman DR, Chan K, Allen SL, Schulman P, Lichtman S, Weiselberg L, Schuster M, Freeman J, Akerman S, et al. Therapy of refractory/relapsed acute leukemia with cytosine arabinoside plus tetrahydrouridine (an inhibitor of cytidine deaminase)—a pilot study. Leukemia. 1991;5:991–8.

    CAS  PubMed  Google Scholar 

  100. Lemaire M, Momparler LF, Raynal NJ, Bernstein ML, Momparler RL. Inhibition of cytidine deaminase by zebularine enhances the antineoplastic action of 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol. 2009;63:411–6.

    Article  CAS  PubMed  Google Scholar 

  101. Fanciullino R, Farnault L, Donnette M, Imbs DC, Roche C, Venton G, Berda-Haddad Y, Ivanov V, Ciccolini J, Ouafik L, Lacarelle B, Costello R. CDA as a predictive marker for life-threatening toxicities in patients with AML treated with cytarabine. Blood Adv. 2018;2:462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Herold N, Rudd SG, Ljungblad L, Sanjiv K, Myrberg IH, Paulin CB, Heshmati Y, Hagenkort A, Kutzner J, Page BD, Calderon-Montano JM, Loseva O, Jemth AS, Bulli L, Axelsson H, Tesi B, Valerie NC, Hoglund A, Bladh J, Wiita E, Sundin M, Uhlin M, Rassidakis G, Heyman M, Tamm KP, Warpman-Berglund U, Walfridsson J, Lehmann S, Grander D, Lundback T, Kogner P, Henter JI, Helleday T, Schaller T. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med. 2017;23:256–63.

    Article  CAS  PubMed  Google Scholar 

  103. Rudd SG, Tsesmetzis N, Sanjiv K, Paulin CB, Sandhow L, Kutzner J, HedMyrberg I, Bunten SS, Axelsson H, Zhang SM, Rasti A, Makela P, Coggins SA, Tao S, Suman S, Branca RM, Mermelekas G, Wiita E, Lee S, Walfridsson J, Schinazi RF, Kim B, Lehtio J, Rassidakis GZ, Pokrovskaja Tamm K, Warpman-Berglund U, Heyman M, Grander D, Lehmann S, Lundback T, Qian H, Henter JI, Schaller T, Helleday T, Herold N. Ribonucleotide reductase inhibitors suppress SAMHD1 ara-CTPase activity enhancing cytarabine efficacy. EMBO Mol Med. 2020;12: e10419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Spasokoukotskaja T, Sasvariszekely M, Keszler G, Albertioni F, Eriksson S, Staub M. Treatment of normal and malignant cells with nucleoside analogues and etoposide enhances deoxycytidine kinase activity. Eur J Cancer. 1999;35:1862–7.

    Article  CAS  PubMed  Google Scholar 

  105. Gautam N, Alamoudi JA, Kumar S, Alnouti Y. Direct and indirect quantification of phosphate metabolites of nucleoside analogs in biological samples. J Pharm Biomed Anal. 2020;178: 112902.

    Article  CAS  PubMed  Google Scholar 

  106. Cohen S, Jordheim LP, Megherbi M, Dumontet C, Guitton J. Liquid chromatographic methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy: a review. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:1912–28.

    Article  CAS  PubMed  Google Scholar 

  107. Juan Z, Dongyuan W, Duo L, Mei D. Current status of 5-FU therapeutic drug monitoring and its correlation with chemotherapy toxicity of colorectal cancer. China Pharm. 2018;29:1724–8.

    Google Scholar 

  108. Min Z, Jingyan T, Huiliang X, Jing C, Ci P, Lu D, Shuhong S. Cytarabine concentration monitoring and its correlation to therapeutic response and prognosis in pediatric leukemia treated with high dose cytarabine. J China Pediatr Blood Cancer. 2008;13:258–60.

    Google Scholar 

  109. Fleming RA, Capizzi RL, Rosner GL, Oliver LK, Smith SJ, Schiffer CA, Silver RT, Peterson BA, Weiss RB, Omura GA, et al. Clinical pharmacology of cytarabine in patients with acute myeloid leukemia: a cancer and leukemia group B study. Cancer Chemother Pharmacol. 1995;36:425–30.

    Article  CAS  PubMed  Google Scholar 

  110. Ivaturi V, Dvorak CC, Chan D, Liu T, Cowan MJ, Wahlstrom J, Stricherz M, Jennissen C, Orchard PJ, Tolar J, Pai SY, Huang L, Aweeka F, Long-Boyle J. Pharmacokinetics and model-based dosing to optimize fludarabine therapy in pediatric hematopoietic cell transplant recipients. Biol Blood Marrow Transplant. 2017;23:1701–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McCune JS, Mager DE, Bemer MJ, Sandmaier BM, Storer BE, Heimfeld S. Association of fludarabine pharmacokinetic/dynamic biomarkers with donor chimerism in nonmyeloablative HCT recipients. Cancer Chemother Pharmacol. 2015;76:85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Juliusson G, Heldal D, Hippe E, Hedenus M, Malm C, Wallman K, Stolt CM, Evensen SA, Albertioni F, Tjonnfjord G, et al. Subcutaneous injections of 2-chlorodeoxyadenosine for symptomatic hairy cell leukemia. J Clin Oncol. 1995;13:989–95.

    Article  CAS  PubMed  Google Scholar 

  113. Buttner B, Knoth H, Kramer M, Oertel R, Seeling A, Sockel K, von Bonin M, Stolzel F, Alakel N, Platzbecker U, Rollig C, Ehninger G, Bornhauser M, Schetelig J, Middeke JM. Impact of pharmacokinetics on the toxicity and efficacy of clofarabine in patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2017;58:2865–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenrong Huang or Liyan Miao.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (81773820), the National Key New Drug Creation Special Programs (2017ZX09304-021), Suzhou Talent Research Project (GSWS2019036), and Hospital Pharmacy Committee of Chinese Pharmaceutical Association (CPA-Z05-ZC-2021-002).

Conflicts of Interest

The authors declare no conflict of interest.

Availability of Data and Material

All data are included in the manuscript.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Author Contributions

Chenrong Huang and Shenjia Huang had the idea for the article. Shenjia Huang and Yicong Bian performed the literature search, and drafted and wrote the manuscript. Chenrong Huang and Liyan Miao critically revised the manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Bian, Y., Huang, C. et al. Is Monitoring of the Intracellular Active Metabolite Levels of Nucleobase and Nucleoside Analogs Ready for Precision Medicine Applications?. Eur J Drug Metab Pharmacokinet 47, 761–775 (2022). https://doi.org/10.1007/s13318-022-00786-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00786-5

Navigation